A probabilistic detectability-based sensor network design method for system health monitoring and prognostics

Significant technological advances in sensing promote the use of large sensor networks to monitor engineered systems, identify damages, and quantify damage levels. Prognostics and health management technique has been developed and applied for a variety of safety-critical engineered systems, given th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent material systems and structures 2015-06, Vol.26 (9), p.1079-1090
Hauptverfasser: Wang, Pingfeng, Youn, Byeng D, Hu, Chao, Ha, Jong Moon, Jeon, Byungchul
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1090
container_issue 9
container_start_page 1079
container_title Journal of intelligent material systems and structures
container_volume 26
creator Wang, Pingfeng
Youn, Byeng D
Hu, Chao
Ha, Jong Moon
Jeon, Byungchul
description Significant technological advances in sensing promote the use of large sensor networks to monitor engineered systems, identify damages, and quantify damage levels. Prognostics and health management technique has been developed and applied for a variety of safety-critical engineered systems, given the critical needs of system health state awareness. The prognostics and health management performance highly relies on real-time sensory signals that convey system health–relevant information. Designing an optimal sensor network with high detectability of system health state is thus of great importance to the prognostics and health management performance. This article proposes a generic sensor network design framework using a detectability measure while accounting for uncertainties in material properties and geometric tolerances. Our contributions in this article are threefold: (1) the definition of a detectability measure to quantify the diagnostic/prognostic performance of a given sensor network, (2) the development of detectability analysis based on physics-based simulation and health state classification, and (3) the formulation of a generic sensor network design optimization problem as a mixed integer nonlinear programming. We employ the genetic algorithms to solve the sensor network design optimization problem. The merit of the proposed methodology is demonstrated with a power transformer system, which suffers from core and winding joint loosening due to consistent vibration.
doi_str_mv 10.1177/1045389X14541496
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1045389X14541496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1045389X14541496</sage_id><sourcerecordid>10.1177_1045389X14541496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-299039bf61cc5cfa764abb2612eb207622a890b6e7a1b7dcad6ba2b069c72f913</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK7ePeYLVDNpmzTHZfEfCF4UvJUkTbtZt8mSich-e1vXk-BpZvi99xgeIdfAbgCkvAVW1WWj3qGqK6iUOCELqEtWNFA2p9M-4WLm5-QCccsYNDUrF2Rc0X2KRhu_85i9pZ3LzuafOx8Ko9F1FF3AmGhw-Sumj0mCfgh0dHkTO9pPBA-Y3Ug3Tu_yho4x-ByTDwPVoZvzhxDncLwkZ73eobv6nUvydn_3un4snl8entar58LyBnLBlWKlMr0Aa2vbaykqbQwXwJ3hTArOdaOYEU5qMLKzuhNGc8OEspL3CsolYcdcmyJicn27T37U6dACa-e62r91TZbiaEE9uHYbP1OYPvxf_w2Ncm21</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A probabilistic detectability-based sensor network design method for system health monitoring and prognostics</title><source>SAGE Complete A-Z List</source><creator>Wang, Pingfeng ; Youn, Byeng D ; Hu, Chao ; Ha, Jong Moon ; Jeon, Byungchul</creator><creatorcontrib>Wang, Pingfeng ; Youn, Byeng D ; Hu, Chao ; Ha, Jong Moon ; Jeon, Byungchul</creatorcontrib><description>Significant technological advances in sensing promote the use of large sensor networks to monitor engineered systems, identify damages, and quantify damage levels. Prognostics and health management technique has been developed and applied for a variety of safety-critical engineered systems, given the critical needs of system health state awareness. The prognostics and health management performance highly relies on real-time sensory signals that convey system health–relevant information. Designing an optimal sensor network with high detectability of system health state is thus of great importance to the prognostics and health management performance. This article proposes a generic sensor network design framework using a detectability measure while accounting for uncertainties in material properties and geometric tolerances. Our contributions in this article are threefold: (1) the definition of a detectability measure to quantify the diagnostic/prognostic performance of a given sensor network, (2) the development of detectability analysis based on physics-based simulation and health state classification, and (3) the formulation of a generic sensor network design optimization problem as a mixed integer nonlinear programming. We employ the genetic algorithms to solve the sensor network design optimization problem. The merit of the proposed methodology is demonstrated with a power transformer system, which suffers from core and winding joint loosening due to consistent vibration.</description><identifier>ISSN: 1045-389X</identifier><identifier>EISSN: 1530-8138</identifier><identifier>DOI: 10.1177/1045389X14541496</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Journal of intelligent material systems and structures, 2015-06, Vol.26 (9), p.1079-1090</ispartof><rights>The Author(s) 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-299039bf61cc5cfa764abb2612eb207622a890b6e7a1b7dcad6ba2b069c72f913</citedby><cites>FETCH-LOGICAL-c281t-299039bf61cc5cfa764abb2612eb207622a890b6e7a1b7dcad6ba2b069c72f913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1045389X14541496$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1045389X14541496$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Wang, Pingfeng</creatorcontrib><creatorcontrib>Youn, Byeng D</creatorcontrib><creatorcontrib>Hu, Chao</creatorcontrib><creatorcontrib>Ha, Jong Moon</creatorcontrib><creatorcontrib>Jeon, Byungchul</creatorcontrib><title>A probabilistic detectability-based sensor network design method for system health monitoring and prognostics</title><title>Journal of intelligent material systems and structures</title><description>Significant technological advances in sensing promote the use of large sensor networks to monitor engineered systems, identify damages, and quantify damage levels. Prognostics and health management technique has been developed and applied for a variety of safety-critical engineered systems, given the critical needs of system health state awareness. The prognostics and health management performance highly relies on real-time sensory signals that convey system health–relevant information. Designing an optimal sensor network with high detectability of system health state is thus of great importance to the prognostics and health management performance. This article proposes a generic sensor network design framework using a detectability measure while accounting for uncertainties in material properties and geometric tolerances. Our contributions in this article are threefold: (1) the definition of a detectability measure to quantify the diagnostic/prognostic performance of a given sensor network, (2) the development of detectability analysis based on physics-based simulation and health state classification, and (3) the formulation of a generic sensor network design optimization problem as a mixed integer nonlinear programming. We employ the genetic algorithms to solve the sensor network design optimization problem. The merit of the proposed methodology is demonstrated with a power transformer system, which suffers from core and winding joint loosening due to consistent vibration.</description><issn>1045-389X</issn><issn>1530-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK7ePeYLVDNpmzTHZfEfCF4UvJUkTbtZt8mSich-e1vXk-BpZvi99xgeIdfAbgCkvAVW1WWj3qGqK6iUOCELqEtWNFA2p9M-4WLm5-QCccsYNDUrF2Rc0X2KRhu_85i9pZ3LzuafOx8Ko9F1FF3AmGhw-Sumj0mCfgh0dHkTO9pPBA-Y3Ug3Tu_yho4x-ByTDwPVoZvzhxDncLwkZ73eobv6nUvydn_3un4snl8entar58LyBnLBlWKlMr0Aa2vbaykqbQwXwJ3hTArOdaOYEU5qMLKzuhNGc8OEspL3CsolYcdcmyJicn27T37U6dACa-e62r91TZbiaEE9uHYbP1OYPvxf_w2Ncm21</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Wang, Pingfeng</creator><creator>Youn, Byeng D</creator><creator>Hu, Chao</creator><creator>Ha, Jong Moon</creator><creator>Jeon, Byungchul</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150601</creationdate><title>A probabilistic detectability-based sensor network design method for system health monitoring and prognostics</title><author>Wang, Pingfeng ; Youn, Byeng D ; Hu, Chao ; Ha, Jong Moon ; Jeon, Byungchul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-299039bf61cc5cfa764abb2612eb207622a890b6e7a1b7dcad6ba2b069c72f913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Pingfeng</creatorcontrib><creatorcontrib>Youn, Byeng D</creatorcontrib><creatorcontrib>Hu, Chao</creatorcontrib><creatorcontrib>Ha, Jong Moon</creatorcontrib><creatorcontrib>Jeon, Byungchul</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of intelligent material systems and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Pingfeng</au><au>Youn, Byeng D</au><au>Hu, Chao</au><au>Ha, Jong Moon</au><au>Jeon, Byungchul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A probabilistic detectability-based sensor network design method for system health monitoring and prognostics</atitle><jtitle>Journal of intelligent material systems and structures</jtitle><date>2015-06-01</date><risdate>2015</risdate><volume>26</volume><issue>9</issue><spage>1079</spage><epage>1090</epage><pages>1079-1090</pages><issn>1045-389X</issn><eissn>1530-8138</eissn><abstract>Significant technological advances in sensing promote the use of large sensor networks to monitor engineered systems, identify damages, and quantify damage levels. Prognostics and health management technique has been developed and applied for a variety of safety-critical engineered systems, given the critical needs of system health state awareness. The prognostics and health management performance highly relies on real-time sensory signals that convey system health–relevant information. Designing an optimal sensor network with high detectability of system health state is thus of great importance to the prognostics and health management performance. This article proposes a generic sensor network design framework using a detectability measure while accounting for uncertainties in material properties and geometric tolerances. Our contributions in this article are threefold: (1) the definition of a detectability measure to quantify the diagnostic/prognostic performance of a given sensor network, (2) the development of detectability analysis based on physics-based simulation and health state classification, and (3) the formulation of a generic sensor network design optimization problem as a mixed integer nonlinear programming. We employ the genetic algorithms to solve the sensor network design optimization problem. The merit of the proposed methodology is demonstrated with a power transformer system, which suffers from core and winding joint loosening due to consistent vibration.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1045389X14541496</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1045-389X
ispartof Journal of intelligent material systems and structures, 2015-06, Vol.26 (9), p.1079-1090
issn 1045-389X
1530-8138
language eng
recordid cdi_crossref_primary_10_1177_1045389X14541496
source SAGE Complete A-Z List
title A probabilistic detectability-based sensor network design method for system health monitoring and prognostics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20probabilistic%20detectability-based%20sensor%20network%20design%20method%20for%20system%20health%20monitoring%20and%20prognostics&rft.jtitle=Journal%20of%20intelligent%20material%20systems%20and%20structures&rft.au=Wang,%20Pingfeng&rft.date=2015-06-01&rft.volume=26&rft.issue=9&rft.spage=1079&rft.epage=1090&rft.pages=1079-1090&rft.issn=1045-389X&rft.eissn=1530-8138&rft_id=info:doi/10.1177/1045389X14541496&rft_dat=%3Csage_cross%3E10.1177_1045389X14541496%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1045389X14541496&rfr_iscdi=true