Mechanical and thermal characterization of polypropylene-reinforced nanocrystalline cellulose nanocomposites

This article addresses the effect of nanocrystalline cellulose (NCC) on the mechanical and thermal properties of polypropylene (PP). A new approach was adopted to produce mechanically improved and thermally stable PP-NCC nanocomposite. This approach involved producing optimized PP-NCC nanocomposite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermoplastic composite materials 2022-05, Vol.35 (5), p.680-691
Hauptverfasser: Al-Haik, Mohammad Y, Aldajah, Saud, Siddique, Waseem, Kabir, Mohammad M, Haik, Yousef
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 691
container_issue 5
container_start_page 680
container_title Journal of thermoplastic composite materials
container_volume 35
creator Al-Haik, Mohammad Y
Aldajah, Saud
Siddique, Waseem
Kabir, Mohammad M
Haik, Yousef
description This article addresses the effect of nanocrystalline cellulose (NCC) on the mechanical and thermal properties of polypropylene (PP). A new approach was adopted to produce mechanically improved and thermally stable PP-NCC nanocomposite. This approach involved producing optimized PP-NCC nanocomposite by adding NCC nanoparticles to PP matrix at different concentrations by means of injection molding process. The aim of this work was to find the optimum NCC concentration to enhance the mechanical and thermal properties of the PP matrix. The mechanical and thermal behavior of PP-NCC nanocomposite was studied by performing three-point bend, nanoindentation, differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and Fourier transform infrared (FTIR) spectroscopy tests. The results showed that the mechanical properties of strength, modulus, and hardness of the nanocomposites increased with the addition of NCC by 6.5%, 19%, and 150%, respectively. DSC results showed that the addition of NCC to PP does not affect the thermal stability (melting temperature). However, TGA showed that upon inclusion of NCC nanoparticles, the thermal stability of the samples improved compared to pure PP except for the 5% added NCC. This is attributed to the presence of NCC rod-like particles that dissipated heat by generating tortuous paths, as depicted in the SEM results and verified by FTIR results.
doi_str_mv 10.1177/0892705720925125
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_0892705720925125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0892705720925125</sage_id><sourcerecordid>10.1177_0892705720925125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-ba383de9f6b78c3a3c467b06ddee5f38240942d0c30534284e157f81b86f58113</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK7ePfYLVCdJ06RHWfwHK170XNJ04mbJJiXpHuqnt2U9CZ7mMb95j-ERckvhjlIp70E1TIKQDBomKBNnZEUFh1I2Cs7JasHlwi_JVc57AOBMiRXxb2h2OjijfaFDX4w7TIdZz8ukzYjJfevRxVBEWwzRT0OKw-QxYJnQBRuTwb4IOkSTpjxq713AwqD3Rx8znkg8DDG7EfM1ubDaZ7z5nWvy-fT4sXkpt-_Pr5uHbWmYomPZaa54j42tO6kM19xUteyg7ntEYbliFTQV68FwELxiqkIqpFW0U7UVilK-JnDKNSnmnNC2Q3IHnaaWQru01f5ta7aUJ0vWX9ju4zGF-cP_738AN-ls3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanical and thermal characterization of polypropylene-reinforced nanocrystalline cellulose nanocomposites</title><source>Access via SAGE</source><creator>Al-Haik, Mohammad Y ; Aldajah, Saud ; Siddique, Waseem ; Kabir, Mohammad M ; Haik, Yousef</creator><creatorcontrib>Al-Haik, Mohammad Y ; Aldajah, Saud ; Siddique, Waseem ; Kabir, Mohammad M ; Haik, Yousef</creatorcontrib><description>This article addresses the effect of nanocrystalline cellulose (NCC) on the mechanical and thermal properties of polypropylene (PP). A new approach was adopted to produce mechanically improved and thermally stable PP-NCC nanocomposite. This approach involved producing optimized PP-NCC nanocomposite by adding NCC nanoparticles to PP matrix at different concentrations by means of injection molding process. The aim of this work was to find the optimum NCC concentration to enhance the mechanical and thermal properties of the PP matrix. The mechanical and thermal behavior of PP-NCC nanocomposite was studied by performing three-point bend, nanoindentation, differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and Fourier transform infrared (FTIR) spectroscopy tests. The results showed that the mechanical properties of strength, modulus, and hardness of the nanocomposites increased with the addition of NCC by 6.5%, 19%, and 150%, respectively. DSC results showed that the addition of NCC to PP does not affect the thermal stability (melting temperature). However, TGA showed that upon inclusion of NCC nanoparticles, the thermal stability of the samples improved compared to pure PP except for the 5% added NCC. This is attributed to the presence of NCC rod-like particles that dissipated heat by generating tortuous paths, as depicted in the SEM results and verified by FTIR results.</description><identifier>ISSN: 0892-7057</identifier><identifier>EISSN: 1530-7980</identifier><identifier>DOI: 10.1177/0892705720925125</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Journal of thermoplastic composite materials, 2022-05, Vol.35 (5), p.680-691</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-ba383de9f6b78c3a3c467b06ddee5f38240942d0c30534284e157f81b86f58113</citedby><cites>FETCH-LOGICAL-c281t-ba383de9f6b78c3a3c467b06ddee5f38240942d0c30534284e157f81b86f58113</cites><orcidid>0000-0001-7002-0603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0892705720925125$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0892705720925125$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Al-Haik, Mohammad Y</creatorcontrib><creatorcontrib>Aldajah, Saud</creatorcontrib><creatorcontrib>Siddique, Waseem</creatorcontrib><creatorcontrib>Kabir, Mohammad M</creatorcontrib><creatorcontrib>Haik, Yousef</creatorcontrib><title>Mechanical and thermal characterization of polypropylene-reinforced nanocrystalline cellulose nanocomposites</title><title>Journal of thermoplastic composite materials</title><description>This article addresses the effect of nanocrystalline cellulose (NCC) on the mechanical and thermal properties of polypropylene (PP). A new approach was adopted to produce mechanically improved and thermally stable PP-NCC nanocomposite. This approach involved producing optimized PP-NCC nanocomposite by adding NCC nanoparticles to PP matrix at different concentrations by means of injection molding process. The aim of this work was to find the optimum NCC concentration to enhance the mechanical and thermal properties of the PP matrix. The mechanical and thermal behavior of PP-NCC nanocomposite was studied by performing three-point bend, nanoindentation, differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and Fourier transform infrared (FTIR) spectroscopy tests. The results showed that the mechanical properties of strength, modulus, and hardness of the nanocomposites increased with the addition of NCC by 6.5%, 19%, and 150%, respectively. DSC results showed that the addition of NCC to PP does not affect the thermal stability (melting temperature). However, TGA showed that upon inclusion of NCC nanoparticles, the thermal stability of the samples improved compared to pure PP except for the 5% added NCC. This is attributed to the presence of NCC rod-like particles that dissipated heat by generating tortuous paths, as depicted in the SEM results and verified by FTIR results.</description><issn>0892-7057</issn><issn>1530-7980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK7ePfYLVCdJ06RHWfwHK170XNJ04mbJJiXpHuqnt2U9CZ7mMb95j-ERckvhjlIp70E1TIKQDBomKBNnZEUFh1I2Cs7JasHlwi_JVc57AOBMiRXxb2h2OjijfaFDX4w7TIdZz8ukzYjJfevRxVBEWwzRT0OKw-QxYJnQBRuTwb4IOkSTpjxq713AwqD3Rx8znkg8DDG7EfM1ubDaZ7z5nWvy-fT4sXkpt-_Pr5uHbWmYomPZaa54j42tO6kM19xUteyg7ntEYbliFTQV68FwELxiqkIqpFW0U7UVilK-JnDKNSnmnNC2Q3IHnaaWQru01f5ta7aUJ0vWX9ju4zGF-cP_738AN-ls3w</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Al-Haik, Mohammad Y</creator><creator>Aldajah, Saud</creator><creator>Siddique, Waseem</creator><creator>Kabir, Mohammad M</creator><creator>Haik, Yousef</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7002-0603</orcidid></search><sort><creationdate>202205</creationdate><title>Mechanical and thermal characterization of polypropylene-reinforced nanocrystalline cellulose nanocomposites</title><author>Al-Haik, Mohammad Y ; Aldajah, Saud ; Siddique, Waseem ; Kabir, Mohammad M ; Haik, Yousef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-ba383de9f6b78c3a3c467b06ddee5f38240942d0c30534284e157f81b86f58113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Haik, Mohammad Y</creatorcontrib><creatorcontrib>Aldajah, Saud</creatorcontrib><creatorcontrib>Siddique, Waseem</creatorcontrib><creatorcontrib>Kabir, Mohammad M</creatorcontrib><creatorcontrib>Haik, Yousef</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of thermoplastic composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Haik, Mohammad Y</au><au>Aldajah, Saud</au><au>Siddique, Waseem</au><au>Kabir, Mohammad M</au><au>Haik, Yousef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical and thermal characterization of polypropylene-reinforced nanocrystalline cellulose nanocomposites</atitle><jtitle>Journal of thermoplastic composite materials</jtitle><date>2022-05</date><risdate>2022</risdate><volume>35</volume><issue>5</issue><spage>680</spage><epage>691</epage><pages>680-691</pages><issn>0892-7057</issn><eissn>1530-7980</eissn><abstract>This article addresses the effect of nanocrystalline cellulose (NCC) on the mechanical and thermal properties of polypropylene (PP). A new approach was adopted to produce mechanically improved and thermally stable PP-NCC nanocomposite. This approach involved producing optimized PP-NCC nanocomposite by adding NCC nanoparticles to PP matrix at different concentrations by means of injection molding process. The aim of this work was to find the optimum NCC concentration to enhance the mechanical and thermal properties of the PP matrix. The mechanical and thermal behavior of PP-NCC nanocomposite was studied by performing three-point bend, nanoindentation, differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and Fourier transform infrared (FTIR) spectroscopy tests. The results showed that the mechanical properties of strength, modulus, and hardness of the nanocomposites increased with the addition of NCC by 6.5%, 19%, and 150%, respectively. DSC results showed that the addition of NCC to PP does not affect the thermal stability (melting temperature). However, TGA showed that upon inclusion of NCC nanoparticles, the thermal stability of the samples improved compared to pure PP except for the 5% added NCC. This is attributed to the presence of NCC rod-like particles that dissipated heat by generating tortuous paths, as depicted in the SEM results and verified by FTIR results.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0892705720925125</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7002-0603</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0892-7057
ispartof Journal of thermoplastic composite materials, 2022-05, Vol.35 (5), p.680-691
issn 0892-7057
1530-7980
language eng
recordid cdi_crossref_primary_10_1177_0892705720925125
source Access via SAGE
title Mechanical and thermal characterization of polypropylene-reinforced nanocrystalline cellulose nanocomposites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A50%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20and%20thermal%20characterization%20of%20polypropylene-reinforced%20nanocrystalline%20cellulose%20nanocomposites&rft.jtitle=Journal%20of%20thermoplastic%20composite%20materials&rft.au=Al-Haik,%20Mohammad%20Y&rft.date=2022-05&rft.volume=35&rft.issue=5&rft.spage=680&rft.epage=691&rft.pages=680-691&rft.issn=0892-7057&rft.eissn=1530-7980&rft_id=info:doi/10.1177/0892705720925125&rft_dat=%3Csage_cross%3E10.1177_0892705720925125%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_0892705720925125&rfr_iscdi=true