Viscoelastic, thermal, and morphological properties of nanocomposites based on modified PVA using a twin-screw melt extrusion process

Melt polymer nanocomposites were prepared using polyvinyl alcohol (PVA) with the different weight percentage of calcined clays (CCs) in a twin-screw extruder at 210°C and 70 r min−1 for 8 min. Bentonite was surface functionalized with benzidine using dilute hydrochloric acid at 60°C and calcined at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermoplastic composite materials 2020-11, Vol.33 (11), p.1555-1568
Hauptverfasser: Rajeswari, B, Malarvizhi, N, Prakash, Dhanasekaran, Jaisankar, Sellamuthu N
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Melt polymer nanocomposites were prepared using polyvinyl alcohol (PVA) with the different weight percentage of calcined clays (CCs) in a twin-screw extruder at 210°C and 70 r min−1 for 8 min. Bentonite was surface functionalized with benzidine using dilute hydrochloric acid at 60°C and calcined at 600°C for 6 h. The CCs were incorporated into the PVA matrix to study their morphology and rheological properties. The melt viscosities of the composites were measured by the cone-plate rheometer, the rheogram show non-Newtonian and thixotropic flow behavior. Scanning electron microscope confirmed the degree of exfoliated nanocomposites. The polymer and functionalized nanoclay interactions were reflected in the enhancement of thermal stability and mechanical properties. The melting endotherm temperature (T m) and glass transition temperature (T g) of the nanocomposites tend to increase with increase in weight percentage of the calcined nanoclays. Thermal properties show that addition of calcined nanoclays would improve the thermal decomposition temperatures from 295°C to 307°C when CC content was 2 wt% in covalent or ionic bonding system.
ISSN:0892-7057
1530-7980
DOI:10.1177/0892705719832650