Electrical Resistivity Imaging for Identifying Critical Sulfate Concentration Zones Along Highways

Assessing sulfate concentration levels and their distributions within road alignments is crucial for the design of highway projects. Sulfate minerals in soils react with calcium-based additives, leading to sulfate-induced heaving and pavement failures. However, a reasonable assessment of the extent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation research record 2023-12, Vol.2677 (12), p.113-127
Hauptverfasser: Zamanian, Mina, Thorat, Yatindra Anand, Asfaw, Natnael, Chavda, Prakash, Shahandashti, Mohsen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue 12
container_start_page 113
container_title Transportation research record
container_volume 2677
creator Zamanian, Mina
Thorat, Yatindra Anand
Asfaw, Natnael
Chavda, Prakash
Shahandashti, Mohsen
description Assessing sulfate concentration levels and their distributions within road alignments is crucial for the design of highway projects. Sulfate minerals in soils react with calcium-based additives, leading to sulfate-induced heaving and pavement failures. However, a reasonable assessment of the extent and levels of sulfate concentration using current practices, such as conventional laboratory-based methods, is still challenging because of the spatial heterogeneity of sulfate minerals and their seasonal fluctuations. This study aims to assess the application of electrical resistivity imaging (ERI) to determine levels and distributions of sulfate concentration. Finite element and least-squares optimization were used to process the data and generate subsurface inverted resistivity profiles. Fourteen ERI surveys were carried out for two sites with a potentially high risk of sulfate-induced heaving to help determine the extent of critical sulfate concentration zones. Laboratory tests (sulfate and moisture content tests) were conducted on ten samples collected from the field sites to validate ERI findings. The results showed that electrical resistivities of critical sulfate concentration zones are significantly lower than typical ranges of electrical resistivity of earth materials because of the abundance of salt ions in pore water, which facilitates the flow of electric current. The findings of this study were consistent with laboratory test results in determining the sulfate concentration levels. This study showed that ERI successfully provides a rapid and continuous assessment of critical sulfate concentration zones within highway alignments. The findings of this study will help materials and pavement engineers determine where alternative materials and pavement designs are needed.
doi_str_mv 10.1177/03611981231167162
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_03611981231167162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_03611981231167162</sage_id><sourcerecordid>10.1177_03611981231167162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-70328e7478f16bdb3f069dea9761dffff295ac74b6d0bd54521d26bf890b7ee13</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI4-gLu8QMfcpE3a5VBGpzAg-LNxU5ImqRk6rSQZpW9v67gTvJvL5XzncjgI3QJZAQhxRxgHKHKgDIAL4PQMLSjwIklJRs_RYtaTGbhEVyHsCWEsFWyB1KYzTfSukR1-MsGF6D5dHHF1kK3rW2wHjytt-ujsON-ld_EHfj52VkaDy6FvJtnL6IYevw29CXjdDRO6de37lxzDNbqwsgvm5ncv0ev95qXcJrvHh6pc75KGURETQRjNjUhFboErrZglvNBGFoKDttPQIpONSBXXROkszShoypXNC6KEMcCWCE5_Gz-E4I2tP7w7SD_WQOq5pPpPSZNndfIE2Zp6Pxx9P0X8x_AN8j9owA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electrical Resistivity Imaging for Identifying Critical Sulfate Concentration Zones Along Highways</title><source>Access via SAGE</source><creator>Zamanian, Mina ; Thorat, Yatindra Anand ; Asfaw, Natnael ; Chavda, Prakash ; Shahandashti, Mohsen</creator><creatorcontrib>Zamanian, Mina ; Thorat, Yatindra Anand ; Asfaw, Natnael ; Chavda, Prakash ; Shahandashti, Mohsen</creatorcontrib><description>Assessing sulfate concentration levels and their distributions within road alignments is crucial for the design of highway projects. Sulfate minerals in soils react with calcium-based additives, leading to sulfate-induced heaving and pavement failures. However, a reasonable assessment of the extent and levels of sulfate concentration using current practices, such as conventional laboratory-based methods, is still challenging because of the spatial heterogeneity of sulfate minerals and their seasonal fluctuations. This study aims to assess the application of electrical resistivity imaging (ERI) to determine levels and distributions of sulfate concentration. Finite element and least-squares optimization were used to process the data and generate subsurface inverted resistivity profiles. Fourteen ERI surveys were carried out for two sites with a potentially high risk of sulfate-induced heaving to help determine the extent of critical sulfate concentration zones. Laboratory tests (sulfate and moisture content tests) were conducted on ten samples collected from the field sites to validate ERI findings. The results showed that electrical resistivities of critical sulfate concentration zones are significantly lower than typical ranges of electrical resistivity of earth materials because of the abundance of salt ions in pore water, which facilitates the flow of electric current. The findings of this study were consistent with laboratory test results in determining the sulfate concentration levels. This study showed that ERI successfully provides a rapid and continuous assessment of critical sulfate concentration zones within highway alignments. The findings of this study will help materials and pavement engineers determine where alternative materials and pavement designs are needed.</description><identifier>ISSN: 0361-1981</identifier><identifier>EISSN: 2169-4052</identifier><identifier>DOI: 10.1177/03611981231167162</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><ispartof>Transportation research record, 2023-12, Vol.2677 (12), p.113-127</ispartof><rights>National Academy of Sciences: Transportation Research Board 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-70328e7478f16bdb3f069dea9761dffff295ac74b6d0bd54521d26bf890b7ee13</citedby><cites>FETCH-LOGICAL-c327t-70328e7478f16bdb3f069dea9761dffff295ac74b6d0bd54521d26bf890b7ee13</cites><orcidid>0000-0001-6434-5647 ; 0000-0002-2373-7596 ; 0000-0002-7388-4543</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/03611981231167162$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/03611981231167162$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Zamanian, Mina</creatorcontrib><creatorcontrib>Thorat, Yatindra Anand</creatorcontrib><creatorcontrib>Asfaw, Natnael</creatorcontrib><creatorcontrib>Chavda, Prakash</creatorcontrib><creatorcontrib>Shahandashti, Mohsen</creatorcontrib><title>Electrical Resistivity Imaging for Identifying Critical Sulfate Concentration Zones Along Highways</title><title>Transportation research record</title><description>Assessing sulfate concentration levels and their distributions within road alignments is crucial for the design of highway projects. Sulfate minerals in soils react with calcium-based additives, leading to sulfate-induced heaving and pavement failures. However, a reasonable assessment of the extent and levels of sulfate concentration using current practices, such as conventional laboratory-based methods, is still challenging because of the spatial heterogeneity of sulfate minerals and their seasonal fluctuations. This study aims to assess the application of electrical resistivity imaging (ERI) to determine levels and distributions of sulfate concentration. Finite element and least-squares optimization were used to process the data and generate subsurface inverted resistivity profiles. Fourteen ERI surveys were carried out for two sites with a potentially high risk of sulfate-induced heaving to help determine the extent of critical sulfate concentration zones. Laboratory tests (sulfate and moisture content tests) were conducted on ten samples collected from the field sites to validate ERI findings. The results showed that electrical resistivities of critical sulfate concentration zones are significantly lower than typical ranges of electrical resistivity of earth materials because of the abundance of salt ions in pore water, which facilitates the flow of electric current. The findings of this study were consistent with laboratory test results in determining the sulfate concentration levels. This study showed that ERI successfully provides a rapid and continuous assessment of critical sulfate concentration zones within highway alignments. The findings of this study will help materials and pavement engineers determine where alternative materials and pavement designs are needed.</description><issn>0361-1981</issn><issn>2169-4052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp9kM1KxDAUhYMoOI4-gLu8QMfcpE3a5VBGpzAg-LNxU5ImqRk6rSQZpW9v67gTvJvL5XzncjgI3QJZAQhxRxgHKHKgDIAL4PQMLSjwIklJRs_RYtaTGbhEVyHsCWEsFWyB1KYzTfSukR1-MsGF6D5dHHF1kK3rW2wHjytt-ujsON-ld_EHfj52VkaDy6FvJtnL6IYevw29CXjdDRO6de37lxzDNbqwsgvm5ncv0ev95qXcJrvHh6pc75KGURETQRjNjUhFboErrZglvNBGFoKDttPQIpONSBXXROkszShoypXNC6KEMcCWCE5_Gz-E4I2tP7w7SD_WQOq5pPpPSZNndfIE2Zp6Pxx9P0X8x_AN8j9owA</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Zamanian, Mina</creator><creator>Thorat, Yatindra Anand</creator><creator>Asfaw, Natnael</creator><creator>Chavda, Prakash</creator><creator>Shahandashti, Mohsen</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6434-5647</orcidid><orcidid>https://orcid.org/0000-0002-2373-7596</orcidid><orcidid>https://orcid.org/0000-0002-7388-4543</orcidid></search><sort><creationdate>202312</creationdate><title>Electrical Resistivity Imaging for Identifying Critical Sulfate Concentration Zones Along Highways</title><author>Zamanian, Mina ; Thorat, Yatindra Anand ; Asfaw, Natnael ; Chavda, Prakash ; Shahandashti, Mohsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-70328e7478f16bdb3f069dea9761dffff295ac74b6d0bd54521d26bf890b7ee13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zamanian, Mina</creatorcontrib><creatorcontrib>Thorat, Yatindra Anand</creatorcontrib><creatorcontrib>Asfaw, Natnael</creatorcontrib><creatorcontrib>Chavda, Prakash</creatorcontrib><creatorcontrib>Shahandashti, Mohsen</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>CrossRef</collection><jtitle>Transportation research record</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zamanian, Mina</au><au>Thorat, Yatindra Anand</au><au>Asfaw, Natnael</au><au>Chavda, Prakash</au><au>Shahandashti, Mohsen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical Resistivity Imaging for Identifying Critical Sulfate Concentration Zones Along Highways</atitle><jtitle>Transportation research record</jtitle><date>2023-12</date><risdate>2023</risdate><volume>2677</volume><issue>12</issue><spage>113</spage><epage>127</epage><pages>113-127</pages><issn>0361-1981</issn><eissn>2169-4052</eissn><abstract>Assessing sulfate concentration levels and their distributions within road alignments is crucial for the design of highway projects. Sulfate minerals in soils react with calcium-based additives, leading to sulfate-induced heaving and pavement failures. However, a reasonable assessment of the extent and levels of sulfate concentration using current practices, such as conventional laboratory-based methods, is still challenging because of the spatial heterogeneity of sulfate minerals and their seasonal fluctuations. This study aims to assess the application of electrical resistivity imaging (ERI) to determine levels and distributions of sulfate concentration. Finite element and least-squares optimization were used to process the data and generate subsurface inverted resistivity profiles. Fourteen ERI surveys were carried out for two sites with a potentially high risk of sulfate-induced heaving to help determine the extent of critical sulfate concentration zones. Laboratory tests (sulfate and moisture content tests) were conducted on ten samples collected from the field sites to validate ERI findings. The results showed that electrical resistivities of critical sulfate concentration zones are significantly lower than typical ranges of electrical resistivity of earth materials because of the abundance of salt ions in pore water, which facilitates the flow of electric current. The findings of this study were consistent with laboratory test results in determining the sulfate concentration levels. This study showed that ERI successfully provides a rapid and continuous assessment of critical sulfate concentration zones within highway alignments. The findings of this study will help materials and pavement engineers determine where alternative materials and pavement designs are needed.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/03611981231167162</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6434-5647</orcidid><orcidid>https://orcid.org/0000-0002-2373-7596</orcidid><orcidid>https://orcid.org/0000-0002-7388-4543</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0361-1981
ispartof Transportation research record, 2023-12, Vol.2677 (12), p.113-127
issn 0361-1981
2169-4052
language eng
recordid cdi_crossref_primary_10_1177_03611981231167162
source Access via SAGE
title Electrical Resistivity Imaging for Identifying Critical Sulfate Concentration Zones Along Highways
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20Resistivity%20Imaging%20for%20Identifying%20Critical%20Sulfate%20Concentration%20Zones%20Along%20Highways&rft.jtitle=Transportation%20research%20record&rft.au=Zamanian,%20Mina&rft.date=2023-12&rft.volume=2677&rft.issue=12&rft.spage=113&rft.epage=127&rft.pages=113-127&rft.issn=0361-1981&rft.eissn=2169-4052&rft_id=info:doi/10.1177/03611981231167162&rft_dat=%3Csage_cross%3E10.1177_03611981231167162%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_03611981231167162&rfr_iscdi=true