Electrical Resistivity Imaging for Identifying Critical Sulfate Concentration Zones Along Highways
Assessing sulfate concentration levels and their distributions within road alignments is crucial for the design of highway projects. Sulfate minerals in soils react with calcium-based additives, leading to sulfate-induced heaving and pavement failures. However, a reasonable assessment of the extent...
Gespeichert in:
Veröffentlicht in: | Transportation research record 2023-12, Vol.2677 (12), p.113-127 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 127 |
---|---|
container_issue | 12 |
container_start_page | 113 |
container_title | Transportation research record |
container_volume | 2677 |
creator | Zamanian, Mina Thorat, Yatindra Anand Asfaw, Natnael Chavda, Prakash Shahandashti, Mohsen |
description | Assessing sulfate concentration levels and their distributions within road alignments is crucial for the design of highway projects. Sulfate minerals in soils react with calcium-based additives, leading to sulfate-induced heaving and pavement failures. However, a reasonable assessment of the extent and levels of sulfate concentration using current practices, such as conventional laboratory-based methods, is still challenging because of the spatial heterogeneity of sulfate minerals and their seasonal fluctuations. This study aims to assess the application of electrical resistivity imaging (ERI) to determine levels and distributions of sulfate concentration. Finite element and least-squares optimization were used to process the data and generate subsurface inverted resistivity profiles. Fourteen ERI surveys were carried out for two sites with a potentially high risk of sulfate-induced heaving to help determine the extent of critical sulfate concentration zones. Laboratory tests (sulfate and moisture content tests) were conducted on ten samples collected from the field sites to validate ERI findings. The results showed that electrical resistivities of critical sulfate concentration zones are significantly lower than typical ranges of electrical resistivity of earth materials because of the abundance of salt ions in pore water, which facilitates the flow of electric current. The findings of this study were consistent with laboratory test results in determining the sulfate concentration levels. This study showed that ERI successfully provides a rapid and continuous assessment of critical sulfate concentration zones within highway alignments. The findings of this study will help materials and pavement engineers determine where alternative materials and pavement designs are needed. |
doi_str_mv | 10.1177/03611981231167162 |
format | Article |
fullrecord | <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_03611981231167162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_03611981231167162</sage_id><sourcerecordid>10.1177_03611981231167162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-70328e7478f16bdb3f069dea9761dffff295ac74b6d0bd54521d26bf890b7ee13</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI4-gLu8QMfcpE3a5VBGpzAg-LNxU5ImqRk6rSQZpW9v67gTvJvL5XzncjgI3QJZAQhxRxgHKHKgDIAL4PQMLSjwIklJRs_RYtaTGbhEVyHsCWEsFWyB1KYzTfSukR1-MsGF6D5dHHF1kK3rW2wHjytt-ujsON-ld_EHfj52VkaDy6FvJtnL6IYevw29CXjdDRO6de37lxzDNbqwsgvm5ncv0ev95qXcJrvHh6pc75KGURETQRjNjUhFboErrZglvNBGFoKDttPQIpONSBXXROkszShoypXNC6KEMcCWCE5_Gz-E4I2tP7w7SD_WQOq5pPpPSZNndfIE2Zp6Pxx9P0X8x_AN8j9owA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electrical Resistivity Imaging for Identifying Critical Sulfate Concentration Zones Along Highways</title><source>Access via SAGE</source><creator>Zamanian, Mina ; Thorat, Yatindra Anand ; Asfaw, Natnael ; Chavda, Prakash ; Shahandashti, Mohsen</creator><creatorcontrib>Zamanian, Mina ; Thorat, Yatindra Anand ; Asfaw, Natnael ; Chavda, Prakash ; Shahandashti, Mohsen</creatorcontrib><description>Assessing sulfate concentration levels and their distributions within road alignments is crucial for the design of highway projects. Sulfate minerals in soils react with calcium-based additives, leading to sulfate-induced heaving and pavement failures. However, a reasonable assessment of the extent and levels of sulfate concentration using current practices, such as conventional laboratory-based methods, is still challenging because of the spatial heterogeneity of sulfate minerals and their seasonal fluctuations. This study aims to assess the application of electrical resistivity imaging (ERI) to determine levels and distributions of sulfate concentration. Finite element and least-squares optimization were used to process the data and generate subsurface inverted resistivity profiles. Fourteen ERI surveys were carried out for two sites with a potentially high risk of sulfate-induced heaving to help determine the extent of critical sulfate concentration zones. Laboratory tests (sulfate and moisture content tests) were conducted on ten samples collected from the field sites to validate ERI findings. The results showed that electrical resistivities of critical sulfate concentration zones are significantly lower than typical ranges of electrical resistivity of earth materials because of the abundance of salt ions in pore water, which facilitates the flow of electric current. The findings of this study were consistent with laboratory test results in determining the sulfate concentration levels. This study showed that ERI successfully provides a rapid and continuous assessment of critical sulfate concentration zones within highway alignments. The findings of this study will help materials and pavement engineers determine where alternative materials and pavement designs are needed.</description><identifier>ISSN: 0361-1981</identifier><identifier>EISSN: 2169-4052</identifier><identifier>DOI: 10.1177/03611981231167162</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><ispartof>Transportation research record, 2023-12, Vol.2677 (12), p.113-127</ispartof><rights>National Academy of Sciences: Transportation Research Board 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-70328e7478f16bdb3f069dea9761dffff295ac74b6d0bd54521d26bf890b7ee13</citedby><cites>FETCH-LOGICAL-c327t-70328e7478f16bdb3f069dea9761dffff295ac74b6d0bd54521d26bf890b7ee13</cites><orcidid>0000-0001-6434-5647 ; 0000-0002-2373-7596 ; 0000-0002-7388-4543</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/03611981231167162$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/03611981231167162$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Zamanian, Mina</creatorcontrib><creatorcontrib>Thorat, Yatindra Anand</creatorcontrib><creatorcontrib>Asfaw, Natnael</creatorcontrib><creatorcontrib>Chavda, Prakash</creatorcontrib><creatorcontrib>Shahandashti, Mohsen</creatorcontrib><title>Electrical Resistivity Imaging for Identifying Critical Sulfate Concentration Zones Along Highways</title><title>Transportation research record</title><description>Assessing sulfate concentration levels and their distributions within road alignments is crucial for the design of highway projects. Sulfate minerals in soils react with calcium-based additives, leading to sulfate-induced heaving and pavement failures. However, a reasonable assessment of the extent and levels of sulfate concentration using current practices, such as conventional laboratory-based methods, is still challenging because of the spatial heterogeneity of sulfate minerals and their seasonal fluctuations. This study aims to assess the application of electrical resistivity imaging (ERI) to determine levels and distributions of sulfate concentration. Finite element and least-squares optimization were used to process the data and generate subsurface inverted resistivity profiles. Fourteen ERI surveys were carried out for two sites with a potentially high risk of sulfate-induced heaving to help determine the extent of critical sulfate concentration zones. Laboratory tests (sulfate and moisture content tests) were conducted on ten samples collected from the field sites to validate ERI findings. The results showed that electrical resistivities of critical sulfate concentration zones are significantly lower than typical ranges of electrical resistivity of earth materials because of the abundance of salt ions in pore water, which facilitates the flow of electric current. The findings of this study were consistent with laboratory test results in determining the sulfate concentration levels. This study showed that ERI successfully provides a rapid and continuous assessment of critical sulfate concentration zones within highway alignments. The findings of this study will help materials and pavement engineers determine where alternative materials and pavement designs are needed.</description><issn>0361-1981</issn><issn>2169-4052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp9kM1KxDAUhYMoOI4-gLu8QMfcpE3a5VBGpzAg-LNxU5ImqRk6rSQZpW9v67gTvJvL5XzncjgI3QJZAQhxRxgHKHKgDIAL4PQMLSjwIklJRs_RYtaTGbhEVyHsCWEsFWyB1KYzTfSukR1-MsGF6D5dHHF1kK3rW2wHjytt-ujsON-ld_EHfj52VkaDy6FvJtnL6IYevw29CXjdDRO6de37lxzDNbqwsgvm5ncv0ev95qXcJrvHh6pc75KGURETQRjNjUhFboErrZglvNBGFoKDttPQIpONSBXXROkszShoypXNC6KEMcCWCE5_Gz-E4I2tP7w7SD_WQOq5pPpPSZNndfIE2Zp6Pxx9P0X8x_AN8j9owA</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Zamanian, Mina</creator><creator>Thorat, Yatindra Anand</creator><creator>Asfaw, Natnael</creator><creator>Chavda, Prakash</creator><creator>Shahandashti, Mohsen</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6434-5647</orcidid><orcidid>https://orcid.org/0000-0002-2373-7596</orcidid><orcidid>https://orcid.org/0000-0002-7388-4543</orcidid></search><sort><creationdate>202312</creationdate><title>Electrical Resistivity Imaging for Identifying Critical Sulfate Concentration Zones Along Highways</title><author>Zamanian, Mina ; Thorat, Yatindra Anand ; Asfaw, Natnael ; Chavda, Prakash ; Shahandashti, Mohsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-70328e7478f16bdb3f069dea9761dffff295ac74b6d0bd54521d26bf890b7ee13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zamanian, Mina</creatorcontrib><creatorcontrib>Thorat, Yatindra Anand</creatorcontrib><creatorcontrib>Asfaw, Natnael</creatorcontrib><creatorcontrib>Chavda, Prakash</creatorcontrib><creatorcontrib>Shahandashti, Mohsen</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>CrossRef</collection><jtitle>Transportation research record</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zamanian, Mina</au><au>Thorat, Yatindra Anand</au><au>Asfaw, Natnael</au><au>Chavda, Prakash</au><au>Shahandashti, Mohsen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical Resistivity Imaging for Identifying Critical Sulfate Concentration Zones Along Highways</atitle><jtitle>Transportation research record</jtitle><date>2023-12</date><risdate>2023</risdate><volume>2677</volume><issue>12</issue><spage>113</spage><epage>127</epage><pages>113-127</pages><issn>0361-1981</issn><eissn>2169-4052</eissn><abstract>Assessing sulfate concentration levels and their distributions within road alignments is crucial for the design of highway projects. Sulfate minerals in soils react with calcium-based additives, leading to sulfate-induced heaving and pavement failures. However, a reasonable assessment of the extent and levels of sulfate concentration using current practices, such as conventional laboratory-based methods, is still challenging because of the spatial heterogeneity of sulfate minerals and their seasonal fluctuations. This study aims to assess the application of electrical resistivity imaging (ERI) to determine levels and distributions of sulfate concentration. Finite element and least-squares optimization were used to process the data and generate subsurface inverted resistivity profiles. Fourteen ERI surveys were carried out for two sites with a potentially high risk of sulfate-induced heaving to help determine the extent of critical sulfate concentration zones. Laboratory tests (sulfate and moisture content tests) were conducted on ten samples collected from the field sites to validate ERI findings. The results showed that electrical resistivities of critical sulfate concentration zones are significantly lower than typical ranges of electrical resistivity of earth materials because of the abundance of salt ions in pore water, which facilitates the flow of electric current. The findings of this study were consistent with laboratory test results in determining the sulfate concentration levels. This study showed that ERI successfully provides a rapid and continuous assessment of critical sulfate concentration zones within highway alignments. The findings of this study will help materials and pavement engineers determine where alternative materials and pavement designs are needed.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/03611981231167162</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6434-5647</orcidid><orcidid>https://orcid.org/0000-0002-2373-7596</orcidid><orcidid>https://orcid.org/0000-0002-7388-4543</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-1981 |
ispartof | Transportation research record, 2023-12, Vol.2677 (12), p.113-127 |
issn | 0361-1981 2169-4052 |
language | eng |
recordid | cdi_crossref_primary_10_1177_03611981231167162 |
source | Access via SAGE |
title | Electrical Resistivity Imaging for Identifying Critical Sulfate Concentration Zones Along Highways |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20Resistivity%20Imaging%20for%20Identifying%20Critical%20Sulfate%20Concentration%20Zones%20Along%20Highways&rft.jtitle=Transportation%20research%20record&rft.au=Zamanian,%20Mina&rft.date=2023-12&rft.volume=2677&rft.issue=12&rft.spage=113&rft.epage=127&rft.pages=113-127&rft.issn=0361-1981&rft.eissn=2169-4052&rft_id=info:doi/10.1177/03611981231167162&rft_dat=%3Csage_cross%3E10.1177_03611981231167162%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_03611981231167162&rfr_iscdi=true |