Dynamic Spatial–Temporal Convolutional Networks for Traffic Flow Forecasting

Because of the highly nonlinear and dynamic spatial–temporal correlation of traffic flow, timely and accurate forecasting is very challenging. Existing methods usually use a static adjacency matrix to represent the spatial relationships between different road segments, even though the spatial relati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation research record 2023-09, Vol.2677 (9), p.489-498
Hauptverfasser: Zhang, Hong, Kan, Sunan, Zhang, XiJun, Cao, Jie, Zhao, Tianxin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 498
container_issue 9
container_start_page 489
container_title Transportation research record
container_volume 2677
creator Zhang, Hong
Kan, Sunan
Zhang, XiJun
Cao, Jie
Zhao, Tianxin
description Because of the highly nonlinear and dynamic spatial–temporal correlation of traffic flow, timely and accurate forecasting is very challenging. Existing methods usually use a static adjacency matrix to represent the spatial relationships between different road segments, even though the spatial relationships can change dynamically. In addition, many methods also ignore the dynamic time-dependent relationships between traffic flows. To this end, we propose a new network model to model the spatial–temporal correlation of traffic flow dynamics. Specifically, we design a dynamic graph construction method, which can generate dynamic graphs based on data to represent dynamic spatial relationships between road segments. Then, a dynamic graph convolutional network is proposed to extract dynamic spatial features. We further propose a multi-head temporal attention mechanism to learn the dynamic temporal dependencies between different times and then use temporal convolutional networks to extract the dynamic temporal features. The experimental results on real data show that the model proposed in this paper has a better prediction performance than existing models.
doi_str_mv 10.1177/03611981231159407
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_03611981231159407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_03611981231159407</sage_id><sourcerecordid>10.1177_03611981231159407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-174c3a64f5cb2cf514fe4b7ca5f8a0570afe859476b4fa794b63ea66e3bc08b23</originalsourceid><addsrcrecordid>eNp9kEFOwzAURC0EEqFwAHa5QIp_7NjJEgVCkaqyIKyjH8uuUpI4slOq7rgDN-QkJCo7JFajr5n3pRlCboEuAaS8o0wAZCnEDCDJOJVnJIhBZBGnSXxOgtmP5sAlufJ-RyljXLKAbB6OPXaNCl8HHBtsvz-_St0N1mEb5rb_sO1-bGw_XRs9Hqx796GxLiwdGjNRRWsPYWGdVujHpt9ekwuDrdc3v7ogb8Vjma-i9cvTc36_jlSc8jECyRVDwU2i6liZBLjRvJYKE5MiTSRFo9OphhQ1NygzXgumUQjNakXTOmYLAqe_ylnvnTbV4JoO3bECWs2DVH8GmZjlifG41dXO7t1Uy_8D_ACDZWJi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamic Spatial–Temporal Convolutional Networks for Traffic Flow Forecasting</title><source>SAGE Complete</source><creator>Zhang, Hong ; Kan, Sunan ; Zhang, XiJun ; Cao, Jie ; Zhao, Tianxin</creator><creatorcontrib>Zhang, Hong ; Kan, Sunan ; Zhang, XiJun ; Cao, Jie ; Zhao, Tianxin</creatorcontrib><description>Because of the highly nonlinear and dynamic spatial–temporal correlation of traffic flow, timely and accurate forecasting is very challenging. Existing methods usually use a static adjacency matrix to represent the spatial relationships between different road segments, even though the spatial relationships can change dynamically. In addition, many methods also ignore the dynamic time-dependent relationships between traffic flows. To this end, we propose a new network model to model the spatial–temporal correlation of traffic flow dynamics. Specifically, we design a dynamic graph construction method, which can generate dynamic graphs based on data to represent dynamic spatial relationships between road segments. Then, a dynamic graph convolutional network is proposed to extract dynamic spatial features. We further propose a multi-head temporal attention mechanism to learn the dynamic temporal dependencies between different times and then use temporal convolutional networks to extract the dynamic temporal features. The experimental results on real data show that the model proposed in this paper has a better prediction performance than existing models.</description><identifier>ISSN: 0361-1981</identifier><identifier>EISSN: 2169-4052</identifier><identifier>DOI: 10.1177/03611981231159407</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><ispartof>Transportation research record, 2023-09, Vol.2677 (9), p.489-498</ispartof><rights>National Academy of Sciences: Transportation Research Board 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-174c3a64f5cb2cf514fe4b7ca5f8a0570afe859476b4fa794b63ea66e3bc08b23</citedby><cites>FETCH-LOGICAL-c284t-174c3a64f5cb2cf514fe4b7ca5f8a0570afe859476b4fa794b63ea66e3bc08b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/03611981231159407$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/03611981231159407$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Kan, Sunan</creatorcontrib><creatorcontrib>Zhang, XiJun</creatorcontrib><creatorcontrib>Cao, Jie</creatorcontrib><creatorcontrib>Zhao, Tianxin</creatorcontrib><title>Dynamic Spatial–Temporal Convolutional Networks for Traffic Flow Forecasting</title><title>Transportation research record</title><description>Because of the highly nonlinear and dynamic spatial–temporal correlation of traffic flow, timely and accurate forecasting is very challenging. Existing methods usually use a static adjacency matrix to represent the spatial relationships between different road segments, even though the spatial relationships can change dynamically. In addition, many methods also ignore the dynamic time-dependent relationships between traffic flows. To this end, we propose a new network model to model the spatial–temporal correlation of traffic flow dynamics. Specifically, we design a dynamic graph construction method, which can generate dynamic graphs based on data to represent dynamic spatial relationships between road segments. Then, a dynamic graph convolutional network is proposed to extract dynamic spatial features. We further propose a multi-head temporal attention mechanism to learn the dynamic temporal dependencies between different times and then use temporal convolutional networks to extract the dynamic temporal features. The experimental results on real data show that the model proposed in this paper has a better prediction performance than existing models.</description><issn>0361-1981</issn><issn>2169-4052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAURC0EEqFwAHa5QIp_7NjJEgVCkaqyIKyjH8uuUpI4slOq7rgDN-QkJCo7JFajr5n3pRlCboEuAaS8o0wAZCnEDCDJOJVnJIhBZBGnSXxOgtmP5sAlufJ-RyljXLKAbB6OPXaNCl8HHBtsvz-_St0N1mEb5rb_sO1-bGw_XRs9Hqx796GxLiwdGjNRRWsPYWGdVujHpt9ekwuDrdc3v7ogb8Vjma-i9cvTc36_jlSc8jECyRVDwU2i6liZBLjRvJYKE5MiTSRFo9OphhQ1NygzXgumUQjNakXTOmYLAqe_ylnvnTbV4JoO3bECWs2DVH8GmZjlifG41dXO7t1Uy_8D_ACDZWJi</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Zhang, Hong</creator><creator>Kan, Sunan</creator><creator>Zhang, XiJun</creator><creator>Cao, Jie</creator><creator>Zhao, Tianxin</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202309</creationdate><title>Dynamic Spatial–Temporal Convolutional Networks for Traffic Flow Forecasting</title><author>Zhang, Hong ; Kan, Sunan ; Zhang, XiJun ; Cao, Jie ; Zhao, Tianxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-174c3a64f5cb2cf514fe4b7ca5f8a0570afe859476b4fa794b63ea66e3bc08b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Kan, Sunan</creatorcontrib><creatorcontrib>Zhang, XiJun</creatorcontrib><creatorcontrib>Cao, Jie</creatorcontrib><creatorcontrib>Zhao, Tianxin</creatorcontrib><collection>CrossRef</collection><jtitle>Transportation research record</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hong</au><au>Kan, Sunan</au><au>Zhang, XiJun</au><au>Cao, Jie</au><au>Zhao, Tianxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Spatial–Temporal Convolutional Networks for Traffic Flow Forecasting</atitle><jtitle>Transportation research record</jtitle><date>2023-09</date><risdate>2023</risdate><volume>2677</volume><issue>9</issue><spage>489</spage><epage>498</epage><pages>489-498</pages><issn>0361-1981</issn><eissn>2169-4052</eissn><abstract>Because of the highly nonlinear and dynamic spatial–temporal correlation of traffic flow, timely and accurate forecasting is very challenging. Existing methods usually use a static adjacency matrix to represent the spatial relationships between different road segments, even though the spatial relationships can change dynamically. In addition, many methods also ignore the dynamic time-dependent relationships between traffic flows. To this end, we propose a new network model to model the spatial–temporal correlation of traffic flow dynamics. Specifically, we design a dynamic graph construction method, which can generate dynamic graphs based on data to represent dynamic spatial relationships between road segments. Then, a dynamic graph convolutional network is proposed to extract dynamic spatial features. We further propose a multi-head temporal attention mechanism to learn the dynamic temporal dependencies between different times and then use temporal convolutional networks to extract the dynamic temporal features. The experimental results on real data show that the model proposed in this paper has a better prediction performance than existing models.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/03611981231159407</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-1981
ispartof Transportation research record, 2023-09, Vol.2677 (9), p.489-498
issn 0361-1981
2169-4052
language eng
recordid cdi_crossref_primary_10_1177_03611981231159407
source SAGE Complete
title Dynamic Spatial–Temporal Convolutional Networks for Traffic Flow Forecasting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Spatial%E2%80%93Temporal%20Convolutional%20Networks%20for%20Traffic%20Flow%20Forecasting&rft.jtitle=Transportation%20research%20record&rft.au=Zhang,%20Hong&rft.date=2023-09&rft.volume=2677&rft.issue=9&rft.spage=489&rft.epage=498&rft.pages=489-498&rft.issn=0361-1981&rft.eissn=2169-4052&rft_id=info:doi/10.1177/03611981231159407&rft_dat=%3Csage_cross%3E10.1177_03611981231159407%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_03611981231159407&rfr_iscdi=true