Mechanistic Identification of Freight Activity Stops from Global Positioning System Data

The identification of freight pick-ups and deliveries, referred to as “freight activity” in this paper, is crucial to characterizing freight operations and assessing the performance of freight transportation systems. However, identifying freight activity stops from global positioning system (GPS) da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation research record 2020-04, Vol.2674 (4), p.235-246
Hauptverfasser: Holguín-Veras, José, Encarnación, Trilce, Pérez-Guzmán, Sofía, Yang, Xia (Sarah)
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 246
container_issue 4
container_start_page 235
container_title Transportation research record
container_volume 2674
creator Holguín-Veras, José
Encarnación, Trilce
Pérez-Guzmán, Sofía
Yang, Xia (Sarah)
description The identification of freight pick-ups and deliveries, referred to as “freight activity” in this paper, is crucial to characterizing freight operations and assessing the performance of freight transportation systems. However, identifying freight activity stops from global positioning system (GPS) data is challenging, particularly in urban freight where congested traffic is common. This paper presents a mechanistic—because it is based on the physics of driving patterns—procedure to identify freight activity stops from raw GPS data. The procedure was implemented to identify stops in three distinct case studies that present a wide range of traffic conditions: Barranquilla, Colombia; Dhaka, Bangladesh; and New York City, United States. The results show that the procedure achieves an average accuracy of above 98.6% when identifying freight activity stops. The results of the proposed procedure were compared with results from support vector machines, random forest, and k nearest neighbors. The mechanistic procedure outperformed these methods in correctly classifying freight activity using second-by-second GPS data.
doi_str_mv 10.1177/0361198120911922
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_0361198120911922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0361198120911922</sage_id><sourcerecordid>10.1177_0361198120911922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-8da225a95faf327c29e9fe1b2f3d9d1e4ea7daa32d9cf66e5ee08876f88c88ce3</originalsourceid><addsrcrecordid>eNp1UEtLAzEYDKLgWr17zB9YzaP7yLFUWwsVhSp4W75mv2xTdjcliUL_fXepJ0EYmMM8GIaQe84eOC-KRyZzzlXJBVMDC3FBEsFzlU5ZJi5JMsrpqF-TmxD2jEk5LWRCvl5R76C3IVpNVzX20RqrIVrXU2fowqNtdpHOdLQ_Nh7pJrpDoMa7ji5bt4WWvrtgR7vtG7o5hogdfYIIt-TKQBvw7pcn5HPx_DF_Sddvy9V8tk61ZCqmZQ1CZKAyA0aKQguFyiDfCiNrVXOcIhQ1gBS10ibPMUNkZVnkpiz1AJQTws692rsQPJrq4G0H_lhxVo3PVH-fGSLpORKgwWrvvn0_LPzffwIotmTb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanistic Identification of Freight Activity Stops from Global Positioning System Data</title><source>SAGE Complete A-Z List</source><creator>Holguín-Veras, José ; Encarnación, Trilce ; Pérez-Guzmán, Sofía ; Yang, Xia (Sarah)</creator><creatorcontrib>Holguín-Veras, José ; Encarnación, Trilce ; Pérez-Guzmán, Sofía ; Yang, Xia (Sarah)</creatorcontrib><description>The identification of freight pick-ups and deliveries, referred to as “freight activity” in this paper, is crucial to characterizing freight operations and assessing the performance of freight transportation systems. However, identifying freight activity stops from global positioning system (GPS) data is challenging, particularly in urban freight where congested traffic is common. This paper presents a mechanistic—because it is based on the physics of driving patterns—procedure to identify freight activity stops from raw GPS data. The procedure was implemented to identify stops in three distinct case studies that present a wide range of traffic conditions: Barranquilla, Colombia; Dhaka, Bangladesh; and New York City, United States. The results show that the procedure achieves an average accuracy of above 98.6% when identifying freight activity stops. The results of the proposed procedure were compared with results from support vector machines, random forest, and k nearest neighbors. The mechanistic procedure outperformed these methods in correctly classifying freight activity using second-by-second GPS data.</description><identifier>ISSN: 0361-1981</identifier><identifier>EISSN: 2169-4052</identifier><identifier>DOI: 10.1177/0361198120911922</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><ispartof>Transportation research record, 2020-04, Vol.2674 (4), p.235-246</ispartof><rights>National Academy of Sciences: Transportation Research Board 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-8da225a95faf327c29e9fe1b2f3d9d1e4ea7daa32d9cf66e5ee08876f88c88ce3</citedby><cites>FETCH-LOGICAL-c309t-8da225a95faf327c29e9fe1b2f3d9d1e4ea7daa32d9cf66e5ee08876f88c88ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0361198120911922$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0361198120911922$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21817,27922,27923,43619,43620</link.rule.ids></links><search><creatorcontrib>Holguín-Veras, José</creatorcontrib><creatorcontrib>Encarnación, Trilce</creatorcontrib><creatorcontrib>Pérez-Guzmán, Sofía</creatorcontrib><creatorcontrib>Yang, Xia (Sarah)</creatorcontrib><title>Mechanistic Identification of Freight Activity Stops from Global Positioning System Data</title><title>Transportation research record</title><description>The identification of freight pick-ups and deliveries, referred to as “freight activity” in this paper, is crucial to characterizing freight operations and assessing the performance of freight transportation systems. However, identifying freight activity stops from global positioning system (GPS) data is challenging, particularly in urban freight where congested traffic is common. This paper presents a mechanistic—because it is based on the physics of driving patterns—procedure to identify freight activity stops from raw GPS data. The procedure was implemented to identify stops in three distinct case studies that present a wide range of traffic conditions: Barranquilla, Colombia; Dhaka, Bangladesh; and New York City, United States. The results show that the procedure achieves an average accuracy of above 98.6% when identifying freight activity stops. The results of the proposed procedure were compared with results from support vector machines, random forest, and k nearest neighbors. The mechanistic procedure outperformed these methods in correctly classifying freight activity using second-by-second GPS data.</description><issn>0361-1981</issn><issn>2169-4052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLAzEYDKLgWr17zB9YzaP7yLFUWwsVhSp4W75mv2xTdjcliUL_fXepJ0EYmMM8GIaQe84eOC-KRyZzzlXJBVMDC3FBEsFzlU5ZJi5JMsrpqF-TmxD2jEk5LWRCvl5R76C3IVpNVzX20RqrIVrXU2fowqNtdpHOdLQ_Nh7pJrpDoMa7ji5bt4WWvrtgR7vtG7o5hogdfYIIt-TKQBvw7pcn5HPx_DF_Sddvy9V8tk61ZCqmZQ1CZKAyA0aKQguFyiDfCiNrVXOcIhQ1gBS10ibPMUNkZVnkpiz1AJQTws692rsQPJrq4G0H_lhxVo3PVH-fGSLpORKgwWrvvn0_LPzffwIotmTb</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Holguín-Veras, José</creator><creator>Encarnación, Trilce</creator><creator>Pérez-Guzmán, Sofía</creator><creator>Yang, Xia (Sarah)</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200401</creationdate><title>Mechanistic Identification of Freight Activity Stops from Global Positioning System Data</title><author>Holguín-Veras, José ; Encarnación, Trilce ; Pérez-Guzmán, Sofía ; Yang, Xia (Sarah)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-8da225a95faf327c29e9fe1b2f3d9d1e4ea7daa32d9cf66e5ee08876f88c88ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holguín-Veras, José</creatorcontrib><creatorcontrib>Encarnación, Trilce</creatorcontrib><creatorcontrib>Pérez-Guzmán, Sofía</creatorcontrib><creatorcontrib>Yang, Xia (Sarah)</creatorcontrib><collection>CrossRef</collection><jtitle>Transportation research record</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holguín-Veras, José</au><au>Encarnación, Trilce</au><au>Pérez-Guzmán, Sofía</au><au>Yang, Xia (Sarah)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic Identification of Freight Activity Stops from Global Positioning System Data</atitle><jtitle>Transportation research record</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>2674</volume><issue>4</issue><spage>235</spage><epage>246</epage><pages>235-246</pages><issn>0361-1981</issn><eissn>2169-4052</eissn><abstract>The identification of freight pick-ups and deliveries, referred to as “freight activity” in this paper, is crucial to characterizing freight operations and assessing the performance of freight transportation systems. However, identifying freight activity stops from global positioning system (GPS) data is challenging, particularly in urban freight where congested traffic is common. This paper presents a mechanistic—because it is based on the physics of driving patterns—procedure to identify freight activity stops from raw GPS data. The procedure was implemented to identify stops in three distinct case studies that present a wide range of traffic conditions: Barranquilla, Colombia; Dhaka, Bangladesh; and New York City, United States. The results show that the procedure achieves an average accuracy of above 98.6% when identifying freight activity stops. The results of the proposed procedure were compared with results from support vector machines, random forest, and k nearest neighbors. The mechanistic procedure outperformed these methods in correctly classifying freight activity using second-by-second GPS data.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/0361198120911922</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-1981
ispartof Transportation research record, 2020-04, Vol.2674 (4), p.235-246
issn 0361-1981
2169-4052
language eng
recordid cdi_crossref_primary_10_1177_0361198120911922
source SAGE Complete A-Z List
title Mechanistic Identification of Freight Activity Stops from Global Positioning System Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A03%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20Identification%20of%20Freight%20Activity%20Stops%20from%20Global%20Positioning%20System%20Data&rft.jtitle=Transportation%20research%20record&rft.au=Holgu%C3%ADn-Veras,%20Jos%C3%A9&rft.date=2020-04-01&rft.volume=2674&rft.issue=4&rft.spage=235&rft.epage=246&rft.pages=235-246&rft.issn=0361-1981&rft.eissn=2169-4052&rft_id=info:doi/10.1177/0361198120911922&rft_dat=%3Csage_cross%3E10.1177_0361198120911922%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_0361198120911922&rfr_iscdi=true