Mechanistic Identification of Freight Activity Stops from Global Positioning System Data
The identification of freight pick-ups and deliveries, referred to as “freight activity” in this paper, is crucial to characterizing freight operations and assessing the performance of freight transportation systems. However, identifying freight activity stops from global positioning system (GPS) da...
Gespeichert in:
Veröffentlicht in: | Transportation research record 2020-04, Vol.2674 (4), p.235-246 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 246 |
---|---|
container_issue | 4 |
container_start_page | 235 |
container_title | Transportation research record |
container_volume | 2674 |
creator | Holguín-Veras, José Encarnación, Trilce Pérez-Guzmán, Sofía Yang, Xia (Sarah) |
description | The identification of freight pick-ups and deliveries, referred to as “freight activity” in this paper, is crucial to characterizing freight operations and assessing the performance of freight transportation systems. However, identifying freight activity stops from global positioning system (GPS) data is challenging, particularly in urban freight where congested traffic is common. This paper presents a mechanistic—because it is based on the physics of driving patterns—procedure to identify freight activity stops from raw GPS data. The procedure was implemented to identify stops in three distinct case studies that present a wide range of traffic conditions: Barranquilla, Colombia; Dhaka, Bangladesh; and New York City, United States. The results show that the procedure achieves an average accuracy of above 98.6% when identifying freight activity stops. The results of the proposed procedure were compared with results from support vector machines, random forest, and k nearest neighbors. The mechanistic procedure outperformed these methods in correctly classifying freight activity using second-by-second GPS data. |
doi_str_mv | 10.1177/0361198120911922 |
format | Article |
fullrecord | <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_0361198120911922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0361198120911922</sage_id><sourcerecordid>10.1177_0361198120911922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-8da225a95faf327c29e9fe1b2f3d9d1e4ea7daa32d9cf66e5ee08876f88c88ce3</originalsourceid><addsrcrecordid>eNp1UEtLAzEYDKLgWr17zB9YzaP7yLFUWwsVhSp4W75mv2xTdjcliUL_fXepJ0EYmMM8GIaQe84eOC-KRyZzzlXJBVMDC3FBEsFzlU5ZJi5JMsrpqF-TmxD2jEk5LWRCvl5R76C3IVpNVzX20RqrIVrXU2fowqNtdpHOdLQ_Nh7pJrpDoMa7ji5bt4WWvrtgR7vtG7o5hogdfYIIt-TKQBvw7pcn5HPx_DF_Sddvy9V8tk61ZCqmZQ1CZKAyA0aKQguFyiDfCiNrVXOcIhQ1gBS10ibPMUNkZVnkpiz1AJQTws692rsQPJrq4G0H_lhxVo3PVH-fGSLpORKgwWrvvn0_LPzffwIotmTb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanistic Identification of Freight Activity Stops from Global Positioning System Data</title><source>SAGE Complete A-Z List</source><creator>Holguín-Veras, José ; Encarnación, Trilce ; Pérez-Guzmán, Sofía ; Yang, Xia (Sarah)</creator><creatorcontrib>Holguín-Veras, José ; Encarnación, Trilce ; Pérez-Guzmán, Sofía ; Yang, Xia (Sarah)</creatorcontrib><description>The identification of freight pick-ups and deliveries, referred to as “freight activity” in this paper, is crucial to characterizing freight operations and assessing the performance of freight transportation systems. However, identifying freight activity stops from global positioning system (GPS) data is challenging, particularly in urban freight where congested traffic is common. This paper presents a mechanistic—because it is based on the physics of driving patterns—procedure to identify freight activity stops from raw GPS data. The procedure was implemented to identify stops in three distinct case studies that present a wide range of traffic conditions: Barranquilla, Colombia; Dhaka, Bangladesh; and New York City, United States. The results show that the procedure achieves an average accuracy of above 98.6% when identifying freight activity stops. The results of the proposed procedure were compared with results from support vector machines, random forest, and k nearest neighbors. The mechanistic procedure outperformed these methods in correctly classifying freight activity using second-by-second GPS data.</description><identifier>ISSN: 0361-1981</identifier><identifier>EISSN: 2169-4052</identifier><identifier>DOI: 10.1177/0361198120911922</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><ispartof>Transportation research record, 2020-04, Vol.2674 (4), p.235-246</ispartof><rights>National Academy of Sciences: Transportation Research Board 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-8da225a95faf327c29e9fe1b2f3d9d1e4ea7daa32d9cf66e5ee08876f88c88ce3</citedby><cites>FETCH-LOGICAL-c309t-8da225a95faf327c29e9fe1b2f3d9d1e4ea7daa32d9cf66e5ee08876f88c88ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0361198120911922$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0361198120911922$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21817,27922,27923,43619,43620</link.rule.ids></links><search><creatorcontrib>Holguín-Veras, José</creatorcontrib><creatorcontrib>Encarnación, Trilce</creatorcontrib><creatorcontrib>Pérez-Guzmán, Sofía</creatorcontrib><creatorcontrib>Yang, Xia (Sarah)</creatorcontrib><title>Mechanistic Identification of Freight Activity Stops from Global Positioning System Data</title><title>Transportation research record</title><description>The identification of freight pick-ups and deliveries, referred to as “freight activity” in this paper, is crucial to characterizing freight operations and assessing the performance of freight transportation systems. However, identifying freight activity stops from global positioning system (GPS) data is challenging, particularly in urban freight where congested traffic is common. This paper presents a mechanistic—because it is based on the physics of driving patterns—procedure to identify freight activity stops from raw GPS data. The procedure was implemented to identify stops in three distinct case studies that present a wide range of traffic conditions: Barranquilla, Colombia; Dhaka, Bangladesh; and New York City, United States. The results show that the procedure achieves an average accuracy of above 98.6% when identifying freight activity stops. The results of the proposed procedure were compared with results from support vector machines, random forest, and k nearest neighbors. The mechanistic procedure outperformed these methods in correctly classifying freight activity using second-by-second GPS data.</description><issn>0361-1981</issn><issn>2169-4052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLAzEYDKLgWr17zB9YzaP7yLFUWwsVhSp4W75mv2xTdjcliUL_fXepJ0EYmMM8GIaQe84eOC-KRyZzzlXJBVMDC3FBEsFzlU5ZJi5JMsrpqF-TmxD2jEk5LWRCvl5R76C3IVpNVzX20RqrIVrXU2fowqNtdpHOdLQ_Nh7pJrpDoMa7ji5bt4WWvrtgR7vtG7o5hogdfYIIt-TKQBvw7pcn5HPx_DF_Sddvy9V8tk61ZCqmZQ1CZKAyA0aKQguFyiDfCiNrVXOcIhQ1gBS10ibPMUNkZVnkpiz1AJQTws692rsQPJrq4G0H_lhxVo3PVH-fGSLpORKgwWrvvn0_LPzffwIotmTb</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Holguín-Veras, José</creator><creator>Encarnación, Trilce</creator><creator>Pérez-Guzmán, Sofía</creator><creator>Yang, Xia (Sarah)</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200401</creationdate><title>Mechanistic Identification of Freight Activity Stops from Global Positioning System Data</title><author>Holguín-Veras, José ; Encarnación, Trilce ; Pérez-Guzmán, Sofía ; Yang, Xia (Sarah)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-8da225a95faf327c29e9fe1b2f3d9d1e4ea7daa32d9cf66e5ee08876f88c88ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holguín-Veras, José</creatorcontrib><creatorcontrib>Encarnación, Trilce</creatorcontrib><creatorcontrib>Pérez-Guzmán, Sofía</creatorcontrib><creatorcontrib>Yang, Xia (Sarah)</creatorcontrib><collection>CrossRef</collection><jtitle>Transportation research record</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holguín-Veras, José</au><au>Encarnación, Trilce</au><au>Pérez-Guzmán, Sofía</au><au>Yang, Xia (Sarah)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic Identification of Freight Activity Stops from Global Positioning System Data</atitle><jtitle>Transportation research record</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>2674</volume><issue>4</issue><spage>235</spage><epage>246</epage><pages>235-246</pages><issn>0361-1981</issn><eissn>2169-4052</eissn><abstract>The identification of freight pick-ups and deliveries, referred to as “freight activity” in this paper, is crucial to characterizing freight operations and assessing the performance of freight transportation systems. However, identifying freight activity stops from global positioning system (GPS) data is challenging, particularly in urban freight where congested traffic is common. This paper presents a mechanistic—because it is based on the physics of driving patterns—procedure to identify freight activity stops from raw GPS data. The procedure was implemented to identify stops in three distinct case studies that present a wide range of traffic conditions: Barranquilla, Colombia; Dhaka, Bangladesh; and New York City, United States. The results show that the procedure achieves an average accuracy of above 98.6% when identifying freight activity stops. The results of the proposed procedure were compared with results from support vector machines, random forest, and k nearest neighbors. The mechanistic procedure outperformed these methods in correctly classifying freight activity using second-by-second GPS data.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/0361198120911922</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-1981 |
ispartof | Transportation research record, 2020-04, Vol.2674 (4), p.235-246 |
issn | 0361-1981 2169-4052 |
language | eng |
recordid | cdi_crossref_primary_10_1177_0361198120911922 |
source | SAGE Complete A-Z List |
title | Mechanistic Identification of Freight Activity Stops from Global Positioning System Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A03%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20Identification%20of%20Freight%20Activity%20Stops%20from%20Global%20Positioning%20System%20Data&rft.jtitle=Transportation%20research%20record&rft.au=Holgu%C3%ADn-Veras,%20Jos%C3%A9&rft.date=2020-04-01&rft.volume=2674&rft.issue=4&rft.spage=235&rft.epage=246&rft.pages=235-246&rft.issn=0361-1981&rft.eissn=2169-4052&rft_id=info:doi/10.1177/0361198120911922&rft_dat=%3Csage_cross%3E10.1177_0361198120911922%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_0361198120911922&rfr_iscdi=true |