Data Fusion of Commercial Vehicle GPS and Roadside Intercept Survey Data

GPS tracking technology produces large amounts of data which represent samples of the commercial vehicle population that are much larger than conventional commercial travel surveys. However, passively collected GPS data lack behavioral detail that a conventional survey offers. This study develops a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation research record 2018-12, Vol.2672 (44), p.10-20
Hauptverfasser: Zhu, Sirui, Amirjamshidi, Glareh, Roorda, Matthew J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 44
container_start_page 10
container_title Transportation research record
container_volume 2672
creator Zhu, Sirui
Amirjamshidi, Glareh
Roorda, Matthew J.
description GPS tracking technology produces large amounts of data which represent samples of the commercial vehicle population that are much larger than conventional commercial travel surveys. However, passively collected GPS data lack behavioral detail that a conventional survey offers. This study develops a data fusion method to impute variables of interest for a large GPS data set, by establishing a link to a behaviorally rich commercial travel survey data set. As a case study, this study uses detailed information from the Ministry of Transportation of Ontario’s Commercial Vehicle Survey (CVS), a truck intercept survey conducted in 2012, to enrich a GPS commercial vehicle tracking data set from Xata Turnpike Inc. The enrichment process has three parts: converting raw GPS tracking data into GPS trips, matching CVS trips to GPS trips, and imputing the missing variables for GPS trips. Evaluation of the outcomes concludes that imputation methods can produce a synthetic data set with large sample size (from GPS data) and rich information (from roadside interview data) with good accuracy.
doi_str_mv 10.1177/0361198118768516
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_0361198118768516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0361198118768516</sage_id><sourcerecordid>10.1177_0361198118768516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-8d0f9c9b4a4baa23483c74e2cc0839c98115c52d79675f0e7e3068872b9a0c983</originalsourceid><addsrcrecordid>eNp1kE9LxDAUxIMoWFfvHvMFoi9N2iRHqe4fWFBc9VrSNNUubbMkrbDf3pT1JHh6h9_MMG8QuqVwR6kQ98BySpWkVIpcZjQ_Q0lKc0U4ZOk5SmZMZn6JrkLYAzDGBUvQ-lGPGi-n0LoBuwYXru-tN63u8If9ak1n8eplh_VQ41en69DWFm-GMUrsYcS7yX_bI54zrtFFo7tgb37vAr0vn96KNdk-rzbFw5YYBmoksoZGGVVxzSutU8YlM4Lb1BiQLIL4QGaytBYqF1kDVlgGuZQirZSGiNkCwSnXeBeCt0158G2v_bGkUM5LlH-XiBZysgT9acu9m_wQG_6v_wHMG1wO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data Fusion of Commercial Vehicle GPS and Roadside Intercept Survey Data</title><source>SAGE Publications</source><creator>Zhu, Sirui ; Amirjamshidi, Glareh ; Roorda, Matthew J.</creator><creatorcontrib>Zhu, Sirui ; Amirjamshidi, Glareh ; Roorda, Matthew J.</creatorcontrib><description>GPS tracking technology produces large amounts of data which represent samples of the commercial vehicle population that are much larger than conventional commercial travel surveys. However, passively collected GPS data lack behavioral detail that a conventional survey offers. This study develops a data fusion method to impute variables of interest for a large GPS data set, by establishing a link to a behaviorally rich commercial travel survey data set. As a case study, this study uses detailed information from the Ministry of Transportation of Ontario’s Commercial Vehicle Survey (CVS), a truck intercept survey conducted in 2012, to enrich a GPS commercial vehicle tracking data set from Xata Turnpike Inc. The enrichment process has three parts: converting raw GPS tracking data into GPS trips, matching CVS trips to GPS trips, and imputing the missing variables for GPS trips. Evaluation of the outcomes concludes that imputation methods can produce a synthetic data set with large sample size (from GPS data) and rich information (from roadside interview data) with good accuracy.</description><identifier>ISSN: 0361-1981</identifier><identifier>EISSN: 2169-4052</identifier><identifier>DOI: 10.1177/0361198118768516</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><ispartof>Transportation research record, 2018-12, Vol.2672 (44), p.10-20</ispartof><rights>National Academy of Sciences: Transportation Research Board 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-8d0f9c9b4a4baa23483c74e2cc0839c98115c52d79675f0e7e3068872b9a0c983</citedby><cites>FETCH-LOGICAL-c309t-8d0f9c9b4a4baa23483c74e2cc0839c98115c52d79675f0e7e3068872b9a0c983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0361198118768516$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0361198118768516$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,777,781,21800,27905,27906,43602,43603</link.rule.ids></links><search><creatorcontrib>Zhu, Sirui</creatorcontrib><creatorcontrib>Amirjamshidi, Glareh</creatorcontrib><creatorcontrib>Roorda, Matthew J.</creatorcontrib><title>Data Fusion of Commercial Vehicle GPS and Roadside Intercept Survey Data</title><title>Transportation research record</title><description>GPS tracking technology produces large amounts of data which represent samples of the commercial vehicle population that are much larger than conventional commercial travel surveys. However, passively collected GPS data lack behavioral detail that a conventional survey offers. This study develops a data fusion method to impute variables of interest for a large GPS data set, by establishing a link to a behaviorally rich commercial travel survey data set. As a case study, this study uses detailed information from the Ministry of Transportation of Ontario’s Commercial Vehicle Survey (CVS), a truck intercept survey conducted in 2012, to enrich a GPS commercial vehicle tracking data set from Xata Turnpike Inc. The enrichment process has three parts: converting raw GPS tracking data into GPS trips, matching CVS trips to GPS trips, and imputing the missing variables for GPS trips. Evaluation of the outcomes concludes that imputation methods can produce a synthetic data set with large sample size (from GPS data) and rich information (from roadside interview data) with good accuracy.</description><issn>0361-1981</issn><issn>2169-4052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAUxIMoWFfvHvMFoi9N2iRHqe4fWFBc9VrSNNUubbMkrbDf3pT1JHh6h9_MMG8QuqVwR6kQ98BySpWkVIpcZjQ_Q0lKc0U4ZOk5SmZMZn6JrkLYAzDGBUvQ-lGPGi-n0LoBuwYXru-tN63u8If9ak1n8eplh_VQ41en69DWFm-GMUrsYcS7yX_bI54zrtFFo7tgb37vAr0vn96KNdk-rzbFw5YYBmoksoZGGVVxzSutU8YlM4Lb1BiQLIL4QGaytBYqF1kDVlgGuZQirZSGiNkCwSnXeBeCt0158G2v_bGkUM5LlH-XiBZysgT9acu9m_wQG_6v_wHMG1wO</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Zhu, Sirui</creator><creator>Amirjamshidi, Glareh</creator><creator>Roorda, Matthew J.</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181201</creationdate><title>Data Fusion of Commercial Vehicle GPS and Roadside Intercept Survey Data</title><author>Zhu, Sirui ; Amirjamshidi, Glareh ; Roorda, Matthew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-8d0f9c9b4a4baa23483c74e2cc0839c98115c52d79675f0e7e3068872b9a0c983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Sirui</creatorcontrib><creatorcontrib>Amirjamshidi, Glareh</creatorcontrib><creatorcontrib>Roorda, Matthew J.</creatorcontrib><collection>CrossRef</collection><jtitle>Transportation research record</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Sirui</au><au>Amirjamshidi, Glareh</au><au>Roorda, Matthew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Fusion of Commercial Vehicle GPS and Roadside Intercept Survey Data</atitle><jtitle>Transportation research record</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>2672</volume><issue>44</issue><spage>10</spage><epage>20</epage><pages>10-20</pages><issn>0361-1981</issn><eissn>2169-4052</eissn><abstract>GPS tracking technology produces large amounts of data which represent samples of the commercial vehicle population that are much larger than conventional commercial travel surveys. However, passively collected GPS data lack behavioral detail that a conventional survey offers. This study develops a data fusion method to impute variables of interest for a large GPS data set, by establishing a link to a behaviorally rich commercial travel survey data set. As a case study, this study uses detailed information from the Ministry of Transportation of Ontario’s Commercial Vehicle Survey (CVS), a truck intercept survey conducted in 2012, to enrich a GPS commercial vehicle tracking data set from Xata Turnpike Inc. The enrichment process has three parts: converting raw GPS tracking data into GPS trips, matching CVS trips to GPS trips, and imputing the missing variables for GPS trips. Evaluation of the outcomes concludes that imputation methods can produce a synthetic data set with large sample size (from GPS data) and rich information (from roadside interview data) with good accuracy.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/0361198118768516</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-1981
ispartof Transportation research record, 2018-12, Vol.2672 (44), p.10-20
issn 0361-1981
2169-4052
language eng
recordid cdi_crossref_primary_10_1177_0361198118768516
source SAGE Publications
title Data Fusion of Commercial Vehicle GPS and Roadside Intercept Survey Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A27%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Fusion%20of%20Commercial%20Vehicle%20GPS%20and%20Roadside%20Intercept%20Survey%20Data&rft.jtitle=Transportation%20research%20record&rft.au=Zhu,%20Sirui&rft.date=2018-12-01&rft.volume=2672&rft.issue=44&rft.spage=10&rft.epage=20&rft.pages=10-20&rft.issn=0361-1981&rft.eissn=2169-4052&rft_id=info:doi/10.1177/0361198118768516&rft_dat=%3Csage_cross%3E10.1177_0361198118768516%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_0361198118768516&rfr_iscdi=true