Predicting Urban Arterial Travel Time with State-Space Neural Networks and Kalman Filters

A hybrid model for predicting urban arterial travel time on the basis of so-called state-space neural networks (SSNNs) and the extended Kalman filter (EKF) is presented. Previous research demonstrated that SSNNs can address complex nonlinear spatiotemporal problems. However, SSNN models require off-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation research record 2006, Vol.1968 (1), p.99-108
Hauptverfasser: Liu, Hao, Van Zuylen, Henk, Van Lint, Hans, Salomons, Maria
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!