Predicting Urban Arterial Travel Time with State-Space Neural Networks and Kalman Filters
A hybrid model for predicting urban arterial travel time on the basis of so-called state-space neural networks (SSNNs) and the extended Kalman filter (EKF) is presented. Previous research demonstrated that SSNNs can address complex nonlinear spatiotemporal problems. However, SSNN models require off-...
Gespeichert in:
Veröffentlicht in: | Transportation research record 2006, Vol.1968 (1), p.99-108 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!