Wind farm supervisory controller design for power optimization in localized areas using adaptive learning game theory (ALGT)
In this paper, a supervisory control concept for wind farms is proposed based on the neighboring wind turbines control functions in localized areas for power optimization considering wake effects. The flow control in wind farms to maximize power production is a challenging problem due to its time-va...
Gespeichert in:
Veröffentlicht in: | Wind engineering 2024-04, Vol.48 (2), p.275-296 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 296 |
---|---|
container_issue | 2 |
container_start_page | 275 |
container_title | Wind engineering |
container_volume | 48 |
creator | Fazlollahi, Vahid Shirazi, Farzad A Taghizadeh, Mostafa |
description | In this paper, a supervisory control concept for wind farms is proposed based on the neighboring wind turbines control functions in localized areas for power optimization considering wake effects. The flow control in wind farms to maximize power production is a challenging problem due to its time-varying nonlinear wake dynamics. Hence, we develop a method that authorizes coordination in a wind farm for a squarely payoff-based scenario where the turbines have access only to measurements from their neighbors via repeated interactions. Therefore, in order to maximize output power in a wind farm, an Adaptive Learning Game Theory (ALGT) method is introduced. This control scheme provides an interaction framework that constructs a series of common control functions. Here, in every iteration, each turbine chooses an independent decision according to a localized control law. The control objective of wind turbine
i
determines how each turbine adjusts a decision at each iteration by processing available information. |
doi_str_mv | 10.1177/0309524X231199432 |
format | Article |
fullrecord | <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_0309524X231199432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0309524X231199432</sage_id><sourcerecordid>10.1177_0309524X231199432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-8080adfbba97fcb6776c2038e83d98b537e2a9246d863a40134a3ba900f03f603</originalsourceid><addsrcrecordid>eNp9kE9Lw0AUxBdRsFY_gLc96iH17Z8mm2MpWoWCl4q9hZdkE7cku2E3rbT44U3Qm-DpwbzfDMMQcstgxliSPICAdM7llgvG0lQKfkYmHKSKJPDtOZmM_2gELslVCDsAJhmTE_L1bmxJK_QtDftO-4MJzh9p4WzvXdNoT0sdTG1p5Tzt3OcguK43rTlhb5ylxtLGFdiYky4peo2B7oOxNcUSB-6gaaPR21GpsdW0_9Bj_t1ivdrcX5OLCpugb37vlLw9PW6Wz9H6dfWyXKyjgivZRwoUYFnlOaZJVeRxksQFB6G0EmWq8rlINMeUy7hUsUAJTEgUAwxQgahiEFPCfnIL70Lwuso6b1r0x4xBNs6X_Zlv8Mx-PAFrne3c3tuh4j-Gb5SXcio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Wind farm supervisory controller design for power optimization in localized areas using adaptive learning game theory (ALGT)</title><source>SAGE Complete A-Z List</source><creator>Fazlollahi, Vahid ; Shirazi, Farzad A ; Taghizadeh, Mostafa</creator><creatorcontrib>Fazlollahi, Vahid ; Shirazi, Farzad A ; Taghizadeh, Mostafa</creatorcontrib><description>In this paper, a supervisory control concept for wind farms is proposed based on the neighboring wind turbines control functions in localized areas for power optimization considering wake effects. The flow control in wind farms to maximize power production is a challenging problem due to its time-varying nonlinear wake dynamics. Hence, we develop a method that authorizes coordination in a wind farm for a squarely payoff-based scenario where the turbines have access only to measurements from their neighbors via repeated interactions. Therefore, in order to maximize output power in a wind farm, an Adaptive Learning Game Theory (ALGT) method is introduced. This control scheme provides an interaction framework that constructs a series of common control functions. Here, in every iteration, each turbine chooses an independent decision according to a localized control law. The control objective of wind turbine
i
determines how each turbine adjusts a decision at each iteration by processing available information.</description><identifier>ISSN: 0309-524X</identifier><identifier>EISSN: 2048-402X</identifier><identifier>DOI: 10.1177/0309524X231199432</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Wind engineering, 2024-04, Vol.48 (2), p.275-296</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-8080adfbba97fcb6776c2038e83d98b537e2a9246d863a40134a3ba900f03f603</citedby><cites>FETCH-LOGICAL-c284t-8080adfbba97fcb6776c2038e83d98b537e2a9246d863a40134a3ba900f03f603</cites><orcidid>0000-0003-2295-8132 ; 0000-0003-4482-1452 ; 0000-0001-7185-9427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0309524X231199432$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0309524X231199432$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Fazlollahi, Vahid</creatorcontrib><creatorcontrib>Shirazi, Farzad A</creatorcontrib><creatorcontrib>Taghizadeh, Mostafa</creatorcontrib><title>Wind farm supervisory controller design for power optimization in localized areas using adaptive learning game theory (ALGT)</title><title>Wind engineering</title><description>In this paper, a supervisory control concept for wind farms is proposed based on the neighboring wind turbines control functions in localized areas for power optimization considering wake effects. The flow control in wind farms to maximize power production is a challenging problem due to its time-varying nonlinear wake dynamics. Hence, we develop a method that authorizes coordination in a wind farm for a squarely payoff-based scenario where the turbines have access only to measurements from their neighbors via repeated interactions. Therefore, in order to maximize output power in a wind farm, an Adaptive Learning Game Theory (ALGT) method is introduced. This control scheme provides an interaction framework that constructs a series of common control functions. Here, in every iteration, each turbine chooses an independent decision according to a localized control law. The control objective of wind turbine
i
determines how each turbine adjusts a decision at each iteration by processing available information.</description><issn>0309-524X</issn><issn>2048-402X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AUxBdRsFY_gLc96iH17Z8mm2MpWoWCl4q9hZdkE7cku2E3rbT44U3Qm-DpwbzfDMMQcstgxliSPICAdM7llgvG0lQKfkYmHKSKJPDtOZmM_2gELslVCDsAJhmTE_L1bmxJK_QtDftO-4MJzh9p4WzvXdNoT0sdTG1p5Tzt3OcguK43rTlhb5ylxtLGFdiYky4peo2B7oOxNcUSB-6gaaPR21GpsdW0_9Bj_t1ivdrcX5OLCpugb37vlLw9PW6Wz9H6dfWyXKyjgivZRwoUYFnlOaZJVeRxksQFB6G0EmWq8rlINMeUy7hUsUAJTEgUAwxQgahiEFPCfnIL70Lwuso6b1r0x4xBNs6X_Zlv8Mx-PAFrne3c3tuh4j-Gb5SXcio</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Fazlollahi, Vahid</creator><creator>Shirazi, Farzad A</creator><creator>Taghizadeh, Mostafa</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2295-8132</orcidid><orcidid>https://orcid.org/0000-0003-4482-1452</orcidid><orcidid>https://orcid.org/0000-0001-7185-9427</orcidid></search><sort><creationdate>202404</creationdate><title>Wind farm supervisory controller design for power optimization in localized areas using adaptive learning game theory (ALGT)</title><author>Fazlollahi, Vahid ; Shirazi, Farzad A ; Taghizadeh, Mostafa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-8080adfbba97fcb6776c2038e83d98b537e2a9246d863a40134a3ba900f03f603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fazlollahi, Vahid</creatorcontrib><creatorcontrib>Shirazi, Farzad A</creatorcontrib><creatorcontrib>Taghizadeh, Mostafa</creatorcontrib><collection>CrossRef</collection><jtitle>Wind engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fazlollahi, Vahid</au><au>Shirazi, Farzad A</au><au>Taghizadeh, Mostafa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wind farm supervisory controller design for power optimization in localized areas using adaptive learning game theory (ALGT)</atitle><jtitle>Wind engineering</jtitle><date>2024-04</date><risdate>2024</risdate><volume>48</volume><issue>2</issue><spage>275</spage><epage>296</epage><pages>275-296</pages><issn>0309-524X</issn><eissn>2048-402X</eissn><abstract>In this paper, a supervisory control concept for wind farms is proposed based on the neighboring wind turbines control functions in localized areas for power optimization considering wake effects. The flow control in wind farms to maximize power production is a challenging problem due to its time-varying nonlinear wake dynamics. Hence, we develop a method that authorizes coordination in a wind farm for a squarely payoff-based scenario where the turbines have access only to measurements from their neighbors via repeated interactions. Therefore, in order to maximize output power in a wind farm, an Adaptive Learning Game Theory (ALGT) method is introduced. This control scheme provides an interaction framework that constructs a series of common control functions. Here, in every iteration, each turbine chooses an independent decision according to a localized control law. The control objective of wind turbine
i
determines how each turbine adjusts a decision at each iteration by processing available information.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0309524X231199432</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-2295-8132</orcidid><orcidid>https://orcid.org/0000-0003-4482-1452</orcidid><orcidid>https://orcid.org/0000-0001-7185-9427</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0309-524X |
ispartof | Wind engineering, 2024-04, Vol.48 (2), p.275-296 |
issn | 0309-524X 2048-402X |
language | eng |
recordid | cdi_crossref_primary_10_1177_0309524X231199432 |
source | SAGE Complete A-Z List |
title | Wind farm supervisory controller design for power optimization in localized areas using adaptive learning game theory (ALGT) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A59%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wind%20farm%20supervisory%20controller%20design%20for%20power%20optimization%20in%20localized%20areas%20using%20adaptive%20learning%20game%20theory%20(ALGT)&rft.jtitle=Wind%20engineering&rft.au=Fazlollahi,%20Vahid&rft.date=2024-04&rft.volume=48&rft.issue=2&rft.spage=275&rft.epage=296&rft.pages=275-296&rft.issn=0309-524X&rft.eissn=2048-402X&rft_id=info:doi/10.1177/0309524X231199432&rft_dat=%3Csage_cross%3E10.1177_0309524X231199432%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_0309524X231199432&rfr_iscdi=true |