An unsupervised data-driven approach for wind turbine blade damage detection under passive acoustics-based excitation

Existing passive acoustics-based techniques for wind turbine blade damage detection lack the robustness and adaptability necessary for an operational implementation due to their physics- and model-based dependency. In contrast, this study develops an entirely unsupervised, data-driven damage detecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wind engineering 2022-08, Vol.46 (4), p.1311-1330
Hauptverfasser: Solimine, Jaclyn, Inalpolat, Murat
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1330
container_issue 4
container_start_page 1311
container_title Wind engineering
container_volume 46
creator Solimine, Jaclyn
Inalpolat, Murat
description Existing passive acoustics-based techniques for wind turbine blade damage detection lack the robustness and adaptability necessary for an operational implementation due to their physics- and model-based dependency. In contrast, this study develops an entirely unsupervised, data-driven damage detection technique. The novelty of the technique lies in (i) the development and comparison of spectral and cepstral-domain features for the robust characterization of the cavity-internal acoustics, (ii) the use of autoencoder networks to reduce the effects of non-stationary acoustic excitation, and (iii) the exclusion of labeled or damage-case data in the training set. The technique was successfully demonstrated on a wind turbine blade section inflicted with damage of various sizes, types, and locations, and subjected to airflow-induced passive acoustic excitation provided by a wind tunnel. Damage detection accuracy up to 99.82% was achieved for some damage types.
doi_str_mv 10.1177/0309524X221080470
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_0309524X221080470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0309524X221080470</sage_id><sourcerecordid>10.1177_0309524X221080470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-738c072d19097bc623f70b304c73d27af68900dbeee25683d390b3f481667d943</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANz8Ai7rn8bOsar4kypxAam3yLE34KpNItsp8PYkKjckTnOY-Ua7Q8gthwXnWt-BhHIp1FYIDgaUhjMyE6AMUyC252Q2-WwKXJKrlHYAXHGuZmRYtXRo09BjPIaEnnqbLfMxHLGltu9jZ90HbbpIP0PraR5iHVqk9d56HLMH-z4KZnQ5dFOTx0h7m9LIU-u6IeXgEqvtVI1fLmQ7Ba_JRWP3CW9-dU7eHu5f109s8_L4vF5tmBNGZaalcaCF5yWUunaFkI2GWoJyWnqhbVOYEsDXiCiWhZFelqPdKMOLQvtSyTnhp14Xu5QiNlUfw8HG74pDNe1W_dltZBYnJo2_VbtuiO144j_AD7L_b30</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An unsupervised data-driven approach for wind turbine blade damage detection under passive acoustics-based excitation</title><source>SAGE Journals</source><creator>Solimine, Jaclyn ; Inalpolat, Murat</creator><creatorcontrib>Solimine, Jaclyn ; Inalpolat, Murat</creatorcontrib><description>Existing passive acoustics-based techniques for wind turbine blade damage detection lack the robustness and adaptability necessary for an operational implementation due to their physics- and model-based dependency. In contrast, this study develops an entirely unsupervised, data-driven damage detection technique. The novelty of the technique lies in (i) the development and comparison of spectral and cepstral-domain features for the robust characterization of the cavity-internal acoustics, (ii) the use of autoencoder networks to reduce the effects of non-stationary acoustic excitation, and (iii) the exclusion of labeled or damage-case data in the training set. The technique was successfully demonstrated on a wind turbine blade section inflicted with damage of various sizes, types, and locations, and subjected to airflow-induced passive acoustic excitation provided by a wind tunnel. Damage detection accuracy up to 99.82% was achieved for some damage types.</description><identifier>ISSN: 0309-524X</identifier><identifier>EISSN: 2048-402X</identifier><identifier>DOI: 10.1177/0309524X221080470</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Wind engineering, 2022-08, Vol.46 (4), p.1311-1330</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-738c072d19097bc623f70b304c73d27af68900dbeee25683d390b3f481667d943</citedby><cites>FETCH-LOGICAL-c284t-738c072d19097bc623f70b304c73d27af68900dbeee25683d390b3f481667d943</cites><orcidid>0000-0002-2252-656X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0309524X221080470$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0309524X221080470$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Solimine, Jaclyn</creatorcontrib><creatorcontrib>Inalpolat, Murat</creatorcontrib><title>An unsupervised data-driven approach for wind turbine blade damage detection under passive acoustics-based excitation</title><title>Wind engineering</title><description>Existing passive acoustics-based techniques for wind turbine blade damage detection lack the robustness and adaptability necessary for an operational implementation due to their physics- and model-based dependency. In contrast, this study develops an entirely unsupervised, data-driven damage detection technique. The novelty of the technique lies in (i) the development and comparison of spectral and cepstral-domain features for the robust characterization of the cavity-internal acoustics, (ii) the use of autoencoder networks to reduce the effects of non-stationary acoustic excitation, and (iii) the exclusion of labeled or damage-case data in the training set. The technique was successfully demonstrated on a wind turbine blade section inflicted with damage of various sizes, types, and locations, and subjected to airflow-induced passive acoustic excitation provided by a wind tunnel. Damage detection accuracy up to 99.82% was achieved for some damage types.</description><issn>0309-524X</issn><issn>2048-402X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANz8Ai7rn8bOsar4kypxAam3yLE34KpNItsp8PYkKjckTnOY-Ua7Q8gthwXnWt-BhHIp1FYIDgaUhjMyE6AMUyC252Q2-WwKXJKrlHYAXHGuZmRYtXRo09BjPIaEnnqbLfMxHLGltu9jZ90HbbpIP0PraR5iHVqk9d56HLMH-z4KZnQ5dFOTx0h7m9LIU-u6IeXgEqvtVI1fLmQ7Ba_JRWP3CW9-dU7eHu5f109s8_L4vF5tmBNGZaalcaCF5yWUunaFkI2GWoJyWnqhbVOYEsDXiCiWhZFelqPdKMOLQvtSyTnhp14Xu5QiNlUfw8HG74pDNe1W_dltZBYnJo2_VbtuiO144j_AD7L_b30</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Solimine, Jaclyn</creator><creator>Inalpolat, Murat</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2252-656X</orcidid></search><sort><creationdate>202208</creationdate><title>An unsupervised data-driven approach for wind turbine blade damage detection under passive acoustics-based excitation</title><author>Solimine, Jaclyn ; Inalpolat, Murat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-738c072d19097bc623f70b304c73d27af68900dbeee25683d390b3f481667d943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solimine, Jaclyn</creatorcontrib><creatorcontrib>Inalpolat, Murat</creatorcontrib><collection>CrossRef</collection><jtitle>Wind engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solimine, Jaclyn</au><au>Inalpolat, Murat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An unsupervised data-driven approach for wind turbine blade damage detection under passive acoustics-based excitation</atitle><jtitle>Wind engineering</jtitle><date>2022-08</date><risdate>2022</risdate><volume>46</volume><issue>4</issue><spage>1311</spage><epage>1330</epage><pages>1311-1330</pages><issn>0309-524X</issn><eissn>2048-402X</eissn><abstract>Existing passive acoustics-based techniques for wind turbine blade damage detection lack the robustness and adaptability necessary for an operational implementation due to their physics- and model-based dependency. In contrast, this study develops an entirely unsupervised, data-driven damage detection technique. The novelty of the technique lies in (i) the development and comparison of spectral and cepstral-domain features for the robust characterization of the cavity-internal acoustics, (ii) the use of autoencoder networks to reduce the effects of non-stationary acoustic excitation, and (iii) the exclusion of labeled or damage-case data in the training set. The technique was successfully demonstrated on a wind turbine blade section inflicted with damage of various sizes, types, and locations, and subjected to airflow-induced passive acoustic excitation provided by a wind tunnel. Damage detection accuracy up to 99.82% was achieved for some damage types.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0309524X221080470</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-2252-656X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0309-524X
ispartof Wind engineering, 2022-08, Vol.46 (4), p.1311-1330
issn 0309-524X
2048-402X
language eng
recordid cdi_crossref_primary_10_1177_0309524X221080470
source SAGE Journals
title An unsupervised data-driven approach for wind turbine blade damage detection under passive acoustics-based excitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A27%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20unsupervised%20data-driven%20approach%20for%20wind%20turbine%20blade%20damage%20detection%20under%20passive%20acoustics-based%20excitation&rft.jtitle=Wind%20engineering&rft.au=Solimine,%20Jaclyn&rft.date=2022-08&rft.volume=46&rft.issue=4&rft.spage=1311&rft.epage=1330&rft.pages=1311-1330&rft.issn=0309-524X&rft.eissn=2048-402X&rft_id=info:doi/10.1177/0309524X221080470&rft_dat=%3Csage_cross%3E10.1177_0309524X221080470%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_0309524X221080470&rfr_iscdi=true