Trend-based time series data clustering for wind speed forecasting

Wind forecasting is a time series problem, can aide in estimating the annual energy production of potential wind farms. Seasonality and trend are the two significant components that characterize the wind time series data. Variability in trend and seasonal component affects the performance of most of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wind engineering 2021-08, Vol.45 (4), p.992-1001
Hauptverfasser: Kushwah, Varsha, Wadhvani, Rajesh, Kushwah, Anil Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1001
container_issue 4
container_start_page 992
container_title Wind engineering
container_volume 45
creator Kushwah, Varsha
Wadhvani, Rajesh
Kushwah, Anil Kumar
description Wind forecasting is a time series problem, can aide in estimating the annual energy production of potential wind farms. Seasonality and trend are the two significant components that characterize the wind time series data. Variability in trend and seasonal component affects the performance of most of the forecasting methods. Therefore, to simplify the wind forecasting technique, generally, nonlinear seasonal and trend components are eliminated from wind time series data. Accuracy depends on the application function that is applicable to eliminate the trend and seasonality. In this article, a hybrid approach for time series forecasting has been proposed. A clustering technique has been developed, which finds the clusters of time series data showing identical trend components. After finding the proper clusters of similar trend components, statistical methods, namely, autoregressive integrated moving average and generalized autoregressive score techniques, are applied to the individual cluster. In the end, resulting components are aggregated. The experiment shows that the cluster-based forecasting technique gives better performance as compared with existing statistical models.
doi_str_mv 10.1177/0309524X20941180
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_0309524X20941180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27124396</jstor_id><sage_id>10.1177_0309524X20941180</sage_id><sourcerecordid>27124396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-8ac7fe16a735a45e0b4c1d3f17578043b4dada980ee8eb0225df0a57c8e048e33</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKt3L0K-QHTyZ5vsUYtWoeClQm9LNpktu7S7JbNF_PamVDx48DQ83u89ZoaxWwn3Ulr7ABrKQpm1gtJI6eCMTRQYJwyo9TmbHG1x9C_ZFVEHIDNlJuxplbCPovaEkY_tDjlhapF49KPnYXugMet-w5sh8c-2j5z2mNEsMXgas3XNLhq_Jbz5mVP28fK8mr-K5fvibf64FEGDHoXzwTYoZ97qwpsCoTZBRt1IW1gHRtcm-uhLB4gOa1CqiA34wgaH-Q7Uesrg1BvSQJSwqfap3fn0VUmojj-o_v4gR8QpQn6DVTccUp83_I-_O_EdjUP67VdWKqPLmf4GPthl4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Trend-based time series data clustering for wind speed forecasting</title><source>SAGE Complete</source><creator>Kushwah, Varsha ; Wadhvani, Rajesh ; Kushwah, Anil Kumar</creator><creatorcontrib>Kushwah, Varsha ; Wadhvani, Rajesh ; Kushwah, Anil Kumar</creatorcontrib><description>Wind forecasting is a time series problem, can aide in estimating the annual energy production of potential wind farms. Seasonality and trend are the two significant components that characterize the wind time series data. Variability in trend and seasonal component affects the performance of most of the forecasting methods. Therefore, to simplify the wind forecasting technique, generally, nonlinear seasonal and trend components are eliminated from wind time series data. Accuracy depends on the application function that is applicable to eliminate the trend and seasonality. In this article, a hybrid approach for time series forecasting has been proposed. A clustering technique has been developed, which finds the clusters of time series data showing identical trend components. After finding the proper clusters of similar trend components, statistical methods, namely, autoregressive integrated moving average and generalized autoregressive score techniques, are applied to the individual cluster. In the end, resulting components are aggregated. The experiment shows that the cluster-based forecasting technique gives better performance as compared with existing statistical models.</description><identifier>ISSN: 0309-524X</identifier><identifier>EISSN: 2048-402X</identifier><identifier>DOI: 10.1177/0309524X20941180</identifier><language>eng</language><publisher>London, England: Sage Publications, Inc</publisher><subject>Research Article</subject><ispartof>Wind engineering, 2021-08, Vol.45 (4), p.992-1001</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-8ac7fe16a735a45e0b4c1d3f17578043b4dada980ee8eb0225df0a57c8e048e33</citedby><cites>FETCH-LOGICAL-c303t-8ac7fe16a735a45e0b4c1d3f17578043b4dada980ee8eb0225df0a57c8e048e33</cites><orcidid>0000-0002-0420-9931 ; 0000-0002-2048-997X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0309524X20941180$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0309524X20941180$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Kushwah, Varsha</creatorcontrib><creatorcontrib>Wadhvani, Rajesh</creatorcontrib><creatorcontrib>Kushwah, Anil Kumar</creatorcontrib><title>Trend-based time series data clustering for wind speed forecasting</title><title>Wind engineering</title><description>Wind forecasting is a time series problem, can aide in estimating the annual energy production of potential wind farms. Seasonality and trend are the two significant components that characterize the wind time series data. Variability in trend and seasonal component affects the performance of most of the forecasting methods. Therefore, to simplify the wind forecasting technique, generally, nonlinear seasonal and trend components are eliminated from wind time series data. Accuracy depends on the application function that is applicable to eliminate the trend and seasonality. In this article, a hybrid approach for time series forecasting has been proposed. A clustering technique has been developed, which finds the clusters of time series data showing identical trend components. After finding the proper clusters of similar trend components, statistical methods, namely, autoregressive integrated moving average and generalized autoregressive score techniques, are applied to the individual cluster. In the end, resulting components are aggregated. The experiment shows that the cluster-based forecasting technique gives better performance as compared with existing statistical models.</description><subject>Research Article</subject><issn>0309-524X</issn><issn>2048-402X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKt3L0K-QHTyZ5vsUYtWoeClQm9LNpktu7S7JbNF_PamVDx48DQ83u89ZoaxWwn3Ulr7ABrKQpm1gtJI6eCMTRQYJwyo9TmbHG1x9C_ZFVEHIDNlJuxplbCPovaEkY_tDjlhapF49KPnYXugMet-w5sh8c-2j5z2mNEsMXgas3XNLhq_Jbz5mVP28fK8mr-K5fvibf64FEGDHoXzwTYoZ97qwpsCoTZBRt1IW1gHRtcm-uhLB4gOa1CqiA34wgaH-Q7Uesrg1BvSQJSwqfap3fn0VUmojj-o_v4gR8QpQn6DVTccUp83_I-_O_EdjUP67VdWKqPLmf4GPthl4w</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Kushwah, Varsha</creator><creator>Wadhvani, Rajesh</creator><creator>Kushwah, Anil Kumar</creator><general>Sage Publications, Inc</general><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0420-9931</orcidid><orcidid>https://orcid.org/0000-0002-2048-997X</orcidid></search><sort><creationdate>20210801</creationdate><title>Trend-based time series data clustering for wind speed forecasting</title><author>Kushwah, Varsha ; Wadhvani, Rajesh ; Kushwah, Anil Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-8ac7fe16a735a45e0b4c1d3f17578043b4dada980ee8eb0225df0a57c8e048e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kushwah, Varsha</creatorcontrib><creatorcontrib>Wadhvani, Rajesh</creatorcontrib><creatorcontrib>Kushwah, Anil Kumar</creatorcontrib><collection>CrossRef</collection><jtitle>Wind engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kushwah, Varsha</au><au>Wadhvani, Rajesh</au><au>Kushwah, Anil Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trend-based time series data clustering for wind speed forecasting</atitle><jtitle>Wind engineering</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>45</volume><issue>4</issue><spage>992</spage><epage>1001</epage><pages>992-1001</pages><issn>0309-524X</issn><eissn>2048-402X</eissn><abstract>Wind forecasting is a time series problem, can aide in estimating the annual energy production of potential wind farms. Seasonality and trend are the two significant components that characterize the wind time series data. Variability in trend and seasonal component affects the performance of most of the forecasting methods. Therefore, to simplify the wind forecasting technique, generally, nonlinear seasonal and trend components are eliminated from wind time series data. Accuracy depends on the application function that is applicable to eliminate the trend and seasonality. In this article, a hybrid approach for time series forecasting has been proposed. A clustering technique has been developed, which finds the clusters of time series data showing identical trend components. After finding the proper clusters of similar trend components, statistical methods, namely, autoregressive integrated moving average and generalized autoregressive score techniques, are applied to the individual cluster. In the end, resulting components are aggregated. The experiment shows that the cluster-based forecasting technique gives better performance as compared with existing statistical models.</abstract><cop>London, England</cop><pub>Sage Publications, Inc</pub><doi>10.1177/0309524X20941180</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0420-9931</orcidid><orcidid>https://orcid.org/0000-0002-2048-997X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0309-524X
ispartof Wind engineering, 2021-08, Vol.45 (4), p.992-1001
issn 0309-524X
2048-402X
language eng
recordid cdi_crossref_primary_10_1177_0309524X20941180
source SAGE Complete
subjects Research Article
title Trend-based time series data clustering for wind speed forecasting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A36%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trend-based%20time%20series%20data%20clustering%20for%20wind%20speed%20forecasting&rft.jtitle=Wind%20engineering&rft.au=Kushwah,%20Varsha&rft.date=2021-08-01&rft.volume=45&rft.issue=4&rft.spage=992&rft.epage=1001&rft.pages=992-1001&rft.issn=0309-524X&rft.eissn=2048-402X&rft_id=info:doi/10.1177/0309524X20941180&rft_dat=%3Cjstor_cross%3E27124396%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=27124396&rft_sage_id=10.1177_0309524X20941180&rfr_iscdi=true