A Bayesian Approach to Net Health Benefits: An Illustration and Application to Modeling HIV Prevention

Purpose. To conduct a cost-effectiveness analysis of HIV prevention when costs and effects cannot be measured directly. To quantify the total estimation of uncertainty due to sampling variability as well as inexact knowledge of HIV transmission parameters. Methods. The authors focus on estimating th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical decision making 2004-11, Vol.24 (6), p.634-653
Hauptverfasser: Johnson-Masotti, Ana P., Laud, Purushottam W., Hoffmann, Raymond G., Hayat, Matthew J., Pinkerton, Steven D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 653
container_issue 6
container_start_page 634
container_title Medical decision making
container_volume 24
creator Johnson-Masotti, Ana P.
Laud, Purushottam W.
Hoffmann, Raymond G.
Hayat, Matthew J.
Pinkerton, Steven D.
description Purpose. To conduct a cost-effectiveness analysis of HIV prevention when costs and effects cannot be measured directly. To quantify the total estimation of uncertainty due to sampling variability as well as inexact knowledge of HIV transmission parameters. Methods. The authors focus on estimating the incremental net health benefit (INHB) in a randomized trial of HIV prevention with intervention and control conditions. Using a Bernoulli model of HIV transmission, changes in the participants’ risk behaviors are converted into the number of HIV infections averted. A sampling model is used to account for variation in the behavior measurements. Bayes’s theorem and Monte Carlo methods are used to attain the stated objectives. Results. The authors obtained a positive mean INHB of 0.0008, indicating that advocacy training is just slightly favored over the control condition for men, assuming a $50,000 per quality-adjusted life year (QALY) threshold. To be confident of a positive INHB, the decision maker would need to spend more than $100,000 per QALY.
doi_str_mv 10.1177/0272989X04271040
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_0272989X04271040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0272989X04271040</sage_id><sourcerecordid>10.1177_0272989X04271040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-9d54fff44c49b1a100b431b74fd961a130a5dbef76180f2075c59ba74e49ecfc3</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMobk7ffZJ8gepNmy6Nb52oG8w_Dyp7K2l6s3V0aUk6Yd_elg4EwafL4ZzfgXsIuWZwy5gQdxCKUCZyBTwUDDickDGL4zCYJmx1Ssa9HfT-iFx4vwVgXCb8nIy6UMQjzsfEpHSmDuhLZWnaNK5WekPbmr5iS-eoqnZDZ2jRlK2_p6mli6ra-9aptqwtVbbooarUg-64l7rAqrRrOl980XeH32h765KcGVV5vDreCfl8evx4mAfLt-fFQ7oMdARhG8gi5sYYzjWXOVMMIOcRywU3hZx2OgIVFzkaMWUJmBBErGOZK8GRS9RGRxMCQ692tfcOTda4cqfcIWOQ9ZNlfyfrkJsBafb5Dotf4LhRFwiGgFdrzLb13tnuhf8LfwCQunQB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Bayesian Approach to Net Health Benefits: An Illustration and Application to Modeling HIV Prevention</title><source>MEDLINE</source><source>SAGE Complete</source><creator>Johnson-Masotti, Ana P. ; Laud, Purushottam W. ; Hoffmann, Raymond G. ; Hayat, Matthew J. ; Pinkerton, Steven D.</creator><creatorcontrib>Johnson-Masotti, Ana P. ; Laud, Purushottam W. ; Hoffmann, Raymond G. ; Hayat, Matthew J. ; Pinkerton, Steven D.</creatorcontrib><description>Purpose. To conduct a cost-effectiveness analysis of HIV prevention when costs and effects cannot be measured directly. To quantify the total estimation of uncertainty due to sampling variability as well as inexact knowledge of HIV transmission parameters. Methods. The authors focus on estimating the incremental net health benefit (INHB) in a randomized trial of HIV prevention with intervention and control conditions. Using a Bernoulli model of HIV transmission, changes in the participants’ risk behaviors are converted into the number of HIV infections averted. A sampling model is used to account for variation in the behavior measurements. Bayes’s theorem and Monte Carlo methods are used to attain the stated objectives. Results. The authors obtained a positive mean INHB of 0.0008, indicating that advocacy training is just slightly favored over the control condition for men, assuming a $50,000 per quality-adjusted life year (QALY) threshold. To be confident of a positive INHB, the decision maker would need to spend more than $100,000 per QALY.</description><identifier>ISSN: 0272-989X</identifier><identifier>EISSN: 1552-681X</identifier><identifier>DOI: 10.1177/0272989X04271040</identifier><identifier>PMID: 15534344</identifier><language>eng</language><publisher>Thousand Oaks, CA: Sage Publications</publisher><subject>Bayes Theorem ; Cost-Benefit Analysis ; Decision Support Techniques ; Female ; HIV Infections - economics ; HIV Infections - prevention &amp; control ; HIV Infections - transmission ; Humans ; Male ; Monte Carlo Method ; Patient Education as Topic ; Quality-Adjusted Life Years ; Randomized Controlled Trials as Topic ; Risk-Taking ; Uncertainty</subject><ispartof>Medical decision making, 2004-11, Vol.24 (6), p.634-653</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-9d54fff44c49b1a100b431b74fd961a130a5dbef76180f2075c59ba74e49ecfc3</citedby><cites>FETCH-LOGICAL-c302t-9d54fff44c49b1a100b431b74fd961a130a5dbef76180f2075c59ba74e49ecfc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0272989X04271040$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0272989X04271040$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15534344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson-Masotti, Ana P.</creatorcontrib><creatorcontrib>Laud, Purushottam W.</creatorcontrib><creatorcontrib>Hoffmann, Raymond G.</creatorcontrib><creatorcontrib>Hayat, Matthew J.</creatorcontrib><creatorcontrib>Pinkerton, Steven D.</creatorcontrib><title>A Bayesian Approach to Net Health Benefits: An Illustration and Application to Modeling HIV Prevention</title><title>Medical decision making</title><addtitle>Med Decis Making</addtitle><description>Purpose. To conduct a cost-effectiveness analysis of HIV prevention when costs and effects cannot be measured directly. To quantify the total estimation of uncertainty due to sampling variability as well as inexact knowledge of HIV transmission parameters. Methods. The authors focus on estimating the incremental net health benefit (INHB) in a randomized trial of HIV prevention with intervention and control conditions. Using a Bernoulli model of HIV transmission, changes in the participants’ risk behaviors are converted into the number of HIV infections averted. A sampling model is used to account for variation in the behavior measurements. Bayes’s theorem and Monte Carlo methods are used to attain the stated objectives. Results. The authors obtained a positive mean INHB of 0.0008, indicating that advocacy training is just slightly favored over the control condition for men, assuming a $50,000 per quality-adjusted life year (QALY) threshold. To be confident of a positive INHB, the decision maker would need to spend more than $100,000 per QALY.</description><subject>Bayes Theorem</subject><subject>Cost-Benefit Analysis</subject><subject>Decision Support Techniques</subject><subject>Female</subject><subject>HIV Infections - economics</subject><subject>HIV Infections - prevention &amp; control</subject><subject>HIV Infections - transmission</subject><subject>Humans</subject><subject>Male</subject><subject>Monte Carlo Method</subject><subject>Patient Education as Topic</subject><subject>Quality-Adjusted Life Years</subject><subject>Randomized Controlled Trials as Topic</subject><subject>Risk-Taking</subject><subject>Uncertainty</subject><issn>0272-989X</issn><issn>1552-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kF9LwzAUxYMobk7ffZJ8gepNmy6Nb52oG8w_Dyp7K2l6s3V0aUk6Yd_elg4EwafL4ZzfgXsIuWZwy5gQdxCKUCZyBTwUDDickDGL4zCYJmx1Ssa9HfT-iFx4vwVgXCb8nIy6UMQjzsfEpHSmDuhLZWnaNK5WekPbmr5iS-eoqnZDZ2jRlK2_p6mli6ra-9aptqwtVbbooarUg-64l7rAqrRrOl980XeH32h765KcGVV5vDreCfl8evx4mAfLt-fFQ7oMdARhG8gi5sYYzjWXOVMMIOcRywU3hZx2OgIVFzkaMWUJmBBErGOZK8GRS9RGRxMCQ692tfcOTda4cqfcIWOQ9ZNlfyfrkJsBafb5Dotf4LhRFwiGgFdrzLb13tnuhf8LfwCQunQB</recordid><startdate>200411</startdate><enddate>200411</enddate><creator>Johnson-Masotti, Ana P.</creator><creator>Laud, Purushottam W.</creator><creator>Hoffmann, Raymond G.</creator><creator>Hayat, Matthew J.</creator><creator>Pinkerton, Steven D.</creator><general>Sage Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200411</creationdate><title>A Bayesian Approach to Net Health Benefits: An Illustration and Application to Modeling HIV Prevention</title><author>Johnson-Masotti, Ana P. ; Laud, Purushottam W. ; Hoffmann, Raymond G. ; Hayat, Matthew J. ; Pinkerton, Steven D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-9d54fff44c49b1a100b431b74fd961a130a5dbef76180f2075c59ba74e49ecfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bayes Theorem</topic><topic>Cost-Benefit Analysis</topic><topic>Decision Support Techniques</topic><topic>Female</topic><topic>HIV Infections - economics</topic><topic>HIV Infections - prevention &amp; control</topic><topic>HIV Infections - transmission</topic><topic>Humans</topic><topic>Male</topic><topic>Monte Carlo Method</topic><topic>Patient Education as Topic</topic><topic>Quality-Adjusted Life Years</topic><topic>Randomized Controlled Trials as Topic</topic><topic>Risk-Taking</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson-Masotti, Ana P.</creatorcontrib><creatorcontrib>Laud, Purushottam W.</creatorcontrib><creatorcontrib>Hoffmann, Raymond G.</creatorcontrib><creatorcontrib>Hayat, Matthew J.</creatorcontrib><creatorcontrib>Pinkerton, Steven D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Medical decision making</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson-Masotti, Ana P.</au><au>Laud, Purushottam W.</au><au>Hoffmann, Raymond G.</au><au>Hayat, Matthew J.</au><au>Pinkerton, Steven D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian Approach to Net Health Benefits: An Illustration and Application to Modeling HIV Prevention</atitle><jtitle>Medical decision making</jtitle><addtitle>Med Decis Making</addtitle><date>2004-11</date><risdate>2004</risdate><volume>24</volume><issue>6</issue><spage>634</spage><epage>653</epage><pages>634-653</pages><issn>0272-989X</issn><eissn>1552-681X</eissn><abstract>Purpose. To conduct a cost-effectiveness analysis of HIV prevention when costs and effects cannot be measured directly. To quantify the total estimation of uncertainty due to sampling variability as well as inexact knowledge of HIV transmission parameters. Methods. The authors focus on estimating the incremental net health benefit (INHB) in a randomized trial of HIV prevention with intervention and control conditions. Using a Bernoulli model of HIV transmission, changes in the participants’ risk behaviors are converted into the number of HIV infections averted. A sampling model is used to account for variation in the behavior measurements. Bayes’s theorem and Monte Carlo methods are used to attain the stated objectives. Results. The authors obtained a positive mean INHB of 0.0008, indicating that advocacy training is just slightly favored over the control condition for men, assuming a $50,000 per quality-adjusted life year (QALY) threshold. To be confident of a positive INHB, the decision maker would need to spend more than $100,000 per QALY.</abstract><cop>Thousand Oaks, CA</cop><pub>Sage Publications</pub><pmid>15534344</pmid><doi>10.1177/0272989X04271040</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-989X
ispartof Medical decision making, 2004-11, Vol.24 (6), p.634-653
issn 0272-989X
1552-681X
language eng
recordid cdi_crossref_primary_10_1177_0272989X04271040
source MEDLINE; SAGE Complete
subjects Bayes Theorem
Cost-Benefit Analysis
Decision Support Techniques
Female
HIV Infections - economics
HIV Infections - prevention & control
HIV Infections - transmission
Humans
Male
Monte Carlo Method
Patient Education as Topic
Quality-Adjusted Life Years
Randomized Controlled Trials as Topic
Risk-Taking
Uncertainty
title A Bayesian Approach to Net Health Benefits: An Illustration and Application to Modeling HIV Prevention
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A37%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20Approach%20to%20Net%20Health%20Benefits:%20An%20Illustration%20and%20Application%20to%20Modeling%20HIV%20Prevention&rft.jtitle=Medical%20decision%20making&rft.au=Johnson-Masotti,%20Ana%20P.&rft.date=2004-11&rft.volume=24&rft.issue=6&rft.spage=634&rft.epage=653&rft.pages=634-653&rft.issn=0272-989X&rft.eissn=1552-681X&rft_id=info:doi/10.1177/0272989X04271040&rft_dat=%3Csage_cross%3E10.1177_0272989X04271040%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/15534344&rft_sage_id=10.1177_0272989X04271040&rfr_iscdi=true