Development of a robust multi-objective history matching for reliable well-based production forecasts

This article presents a dynamic reservoir characterization using a new multi-objective optimization algorithm to quantify the reservoir uncertainties in history matching. The proposed method formulated Pareto-optimality with preference-ordering to derive multiple trade-off history-matched reservoir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy exploration & exploitation 2016-11, Vol.34 (6), p.795-809
Hauptverfasser: Min, Baehyun, Kang, Joe M, Lee, Hoyoung, Jo, Suryeom, Park, Changhyup, Jang, Ilsik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents a dynamic reservoir characterization using a new multi-objective optimization algorithm to quantify the reservoir uncertainties in history matching. The proposed method formulated Pareto-optimality with preference-ordering to derive multiple trade-off history-matched reservoir models for probabilistic production estimation. The integration of linear programming with multi-objective genetic algorithm enhances the efficiency of a multi-directional search by prioritizing the reservoir models that satisfy the aspiration levels on the discrepancy between the observed and the calculated production data. The preference levels are automatically adjusted in correspondence to the quality of the reservoir models for facilitating the model update process during optimization. An oil-field application result indicates the method outperforms the conventional multi-objective optimization method in terms of the relative average error for the production data despite a small loss of diversity-preservation among the reservoir models.
ISSN:0144-5987
2048-4054
DOI:10.1177/0144598716665008