A novel wind power prediction method of the lower upper bound evaluation based on GRU

Compared with the point prediction of the wind power, the interval prediction provides more information to assist power dispatching and optimize quotation strategies in power trading. To improve the accuracy of the prediction intervals, this paper proposes a novel model based on the lower upper boun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Institute of Measurement and Control 2024-06
Hauptverfasser: Zha, Wenting, Zhang, Jiahou, Dan, Yangqing, Li, Yalong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Transactions of the Institute of Measurement and Control
container_volume
creator Zha, Wenting
Zhang, Jiahou
Dan, Yangqing
Li, Yalong
description Compared with the point prediction of the wind power, the interval prediction provides more information to assist power dispatching and optimize quotation strategies in power trading. To improve the accuracy of the prediction intervals, this paper proposes a novel model based on the lower upper bound evaluation (LUBE) by the gate recurrent unit (GRU) network. First, the Pearson correlation coefficient is selected to screen out the variables related to wind power, which can simplify the input variables of the prediction model while preserving the feature information as much as possible. Afterwards, with the consideration of the prediction interval relative deviation ( PIRD), the improved objective function is introduced. Based on the GRU network, the prediction intervals of the wind power can be obtained to minimize the new objective function. Finally, by choosing several mainstream neural networks, experiments are conducted towards a certain wind farm in China. The results show that the proposed model has a significant improvement in both prediction interval width and PIRD under the given prediction interval coverage probability ( PICP).
doi_str_mv 10.1177/01423312241256699
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1177_01423312241256699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1177_01423312241256699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c127t-632351e5f4829c474d090aad88ff6c59e54a9a1112d42a45e1e4dbbaa5a202cb3</originalsourceid><addsrcrecordid>eNplkMFOwzAQRC0EEqHwAdz8AwGvvU7qY1VBqVQJCdFztIk3alAaR07air-nKdy4zBzmzRxGiEdQTwB5_qwAtTGgNYK2WebclUgA8zxVJnPXIpnydAJuxd0wfCmlEDNMxHYhu3DkVp6azss-nDjKPrJvqrEJndzzuAtehlqOO5btJT70_VnLcDgX-EjtgS5oSQOfyU6uPrb34qamduCHP5-J7evL5_It3byv1svFJq1A52OaGW0ssK1xrl2FOXrlFJGfz-s6q6xji-QIALRHTWgZGH1ZElnSSlelmQn43a1iGIbIddHHZk_xuwBVTL8U_34xP8m0VWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A novel wind power prediction method of the lower upper bound evaluation based on GRU</title><source>Access via SAGE</source><creator>Zha, Wenting ; Zhang, Jiahou ; Dan, Yangqing ; Li, Yalong</creator><creatorcontrib>Zha, Wenting ; Zhang, Jiahou ; Dan, Yangqing ; Li, Yalong</creatorcontrib><description>Compared with the point prediction of the wind power, the interval prediction provides more information to assist power dispatching and optimize quotation strategies in power trading. To improve the accuracy of the prediction intervals, this paper proposes a novel model based on the lower upper bound evaluation (LUBE) by the gate recurrent unit (GRU) network. First, the Pearson correlation coefficient is selected to screen out the variables related to wind power, which can simplify the input variables of the prediction model while preserving the feature information as much as possible. Afterwards, with the consideration of the prediction interval relative deviation ( PIRD), the improved objective function is introduced. Based on the GRU network, the prediction intervals of the wind power can be obtained to minimize the new objective function. Finally, by choosing several mainstream neural networks, experiments are conducted towards a certain wind farm in China. The results show that the proposed model has a significant improvement in both prediction interval width and PIRD under the given prediction interval coverage probability ( PICP).</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/01423312241256699</identifier><language>eng</language><ispartof>Transactions of the Institute of Measurement and Control, 2024-06</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c127t-632351e5f4829c474d090aad88ff6c59e54a9a1112d42a45e1e4dbbaa5a202cb3</cites><orcidid>0000-0002-2052-240X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zha, Wenting</creatorcontrib><creatorcontrib>Zhang, Jiahou</creatorcontrib><creatorcontrib>Dan, Yangqing</creatorcontrib><creatorcontrib>Li, Yalong</creatorcontrib><title>A novel wind power prediction method of the lower upper bound evaluation based on GRU</title><title>Transactions of the Institute of Measurement and Control</title><description>Compared with the point prediction of the wind power, the interval prediction provides more information to assist power dispatching and optimize quotation strategies in power trading. To improve the accuracy of the prediction intervals, this paper proposes a novel model based on the lower upper bound evaluation (LUBE) by the gate recurrent unit (GRU) network. First, the Pearson correlation coefficient is selected to screen out the variables related to wind power, which can simplify the input variables of the prediction model while preserving the feature information as much as possible. Afterwards, with the consideration of the prediction interval relative deviation ( PIRD), the improved objective function is introduced. Based on the GRU network, the prediction intervals of the wind power can be obtained to minimize the new objective function. Finally, by choosing several mainstream neural networks, experiments are conducted towards a certain wind farm in China. The results show that the proposed model has a significant improvement in both prediction interval width and PIRD under the given prediction interval coverage probability ( PICP).</description><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNplkMFOwzAQRC0EEqHwAdz8AwGvvU7qY1VBqVQJCdFztIk3alAaR07air-nKdy4zBzmzRxGiEdQTwB5_qwAtTGgNYK2WebclUgA8zxVJnPXIpnydAJuxd0wfCmlEDNMxHYhu3DkVp6azss-nDjKPrJvqrEJndzzuAtehlqOO5btJT70_VnLcDgX-EjtgS5oSQOfyU6uPrb34qamduCHP5-J7evL5_It3byv1svFJq1A52OaGW0ssK1xrl2FOXrlFJGfz-s6q6xji-QIALRHTWgZGH1ZElnSSlelmQn43a1iGIbIddHHZk_xuwBVTL8U_34xP8m0VWg</recordid><startdate>20240619</startdate><enddate>20240619</enddate><creator>Zha, Wenting</creator><creator>Zhang, Jiahou</creator><creator>Dan, Yangqing</creator><creator>Li, Yalong</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2052-240X</orcidid></search><sort><creationdate>20240619</creationdate><title>A novel wind power prediction method of the lower upper bound evaluation based on GRU</title><author>Zha, Wenting ; Zhang, Jiahou ; Dan, Yangqing ; Li, Yalong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c127t-632351e5f4829c474d090aad88ff6c59e54a9a1112d42a45e1e4dbbaa5a202cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zha, Wenting</creatorcontrib><creatorcontrib>Zhang, Jiahou</creatorcontrib><creatorcontrib>Dan, Yangqing</creatorcontrib><creatorcontrib>Li, Yalong</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zha, Wenting</au><au>Zhang, Jiahou</au><au>Dan, Yangqing</au><au>Li, Yalong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel wind power prediction method of the lower upper bound evaluation based on GRU</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>2024-06-19</date><risdate>2024</risdate><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>Compared with the point prediction of the wind power, the interval prediction provides more information to assist power dispatching and optimize quotation strategies in power trading. To improve the accuracy of the prediction intervals, this paper proposes a novel model based on the lower upper bound evaluation (LUBE) by the gate recurrent unit (GRU) network. First, the Pearson correlation coefficient is selected to screen out the variables related to wind power, which can simplify the input variables of the prediction model while preserving the feature information as much as possible. Afterwards, with the consideration of the prediction interval relative deviation ( PIRD), the improved objective function is introduced. Based on the GRU network, the prediction intervals of the wind power can be obtained to minimize the new objective function. Finally, by choosing several mainstream neural networks, experiments are conducted towards a certain wind farm in China. The results show that the proposed model has a significant improvement in both prediction interval width and PIRD under the given prediction interval coverage probability ( PICP).</abstract><doi>10.1177/01423312241256699</doi><orcidid>https://orcid.org/0000-0002-2052-240X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-3312
ispartof Transactions of the Institute of Measurement and Control, 2024-06
issn 0142-3312
1477-0369
language eng
recordid cdi_crossref_primary_10_1177_01423312241256699
source Access via SAGE
title A novel wind power prediction method of the lower upper bound evaluation based on GRU
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A25%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20wind%20power%20prediction%20method%20of%20the%20lower%20upper%20bound%20evaluation%20based%20on%20GRU&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Zha,%20Wenting&rft.date=2024-06-19&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/01423312241256699&rft_dat=%3Ccrossref%3E10_1177_01423312241256699%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true