Recent Methods for the Study of Measurement Invariance With Many Groups: Alignment and Random Effects
This article reviews and compares recently proposed factor analytic and item response theory approaches to the study of invariance across groups. Two methods are described and contrasted. The alignment method considers the groups as a fixed mode of variation, while the random-intercept, random-loadi...
Gespeichert in:
Veröffentlicht in: | Sociological methods & research 2018-11, Vol.47 (4), p.637-664 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 664 |
---|---|
container_issue | 4 |
container_start_page | 637 |
container_title | Sociological methods & research |
container_volume | 47 |
creator | Muthén, Bengt Asparouhov, Tihomir |
description | This article reviews and compares recently proposed factor analytic and item response theory approaches to the study of invariance across groups. Two methods are described and contrasted. The alignment method considers the groups as a fixed mode of variation, while the random-intercept, random-loading two-level method considers the groups as a random mode of variation. Both maximum likelihood and Bayesian analyses are applied. A survey of close to 50,000 subjects in 26 countries is used as an illustration. In addition, the two methods are studied by Monte Carlo simulations. A list of considerations for choosing between the two methods is presented. |
doi_str_mv | 10.1177/0049124117701488 |
format | Article |
fullrecord | <record><control><sourceid>eric_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_0049124117701488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1194089</ericid><sage_id>10.1177_0049124117701488</sage_id><sourcerecordid>EJ1194089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-c27e210c6addeabc6fbf2ea9aa35eefba979c998507f374b99b54e268707c6973</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFbvXoT9AtHZzSabPUqpbaVF8A8ew2Qza1NsUnYTId_ehIoHwcvMwO-9B28YuxZwK4TWdwDKCKnGG4TKshM2EUkio0wadcomI45Gfs4uQtgBCKkhnrDFM1mqW76hdtuUgbvG83ZL_KXtyp43bgAYOk_7UbSqv9BXWFvi71W75Ruse77wTXcIl-zM4Wegq589ZW8P89fZMlo_LVaz-3VkZZK2w9QkBdgUy5KwsKkrnCQ0iHFC5Ao02lhjsgS0i7UqjCkSRTLNNGibGh1PGRxzrW9C8OTyg6_26PtcQD6Wz_8-YrDcHC3kK_srnz8KYRRkZuDRkQf8oHzXdL4eGvyf9w0o9Gbu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Recent Methods for the Study of Measurement Invariance With Many Groups: Alignment and Random Effects</title><source>SAGE Complete A-Z List</source><creator>Muthén, Bengt ; Asparouhov, Tihomir</creator><creatorcontrib>Muthén, Bengt ; Asparouhov, Tihomir</creatorcontrib><description>This article reviews and compares recently proposed factor analytic and item response theory approaches to the study of invariance across groups. Two methods are described and contrasted. The alignment method considers the groups as a fixed mode of variation, while the random-intercept, random-loading two-level method considers the groups as a random mode of variation. Both maximum likelihood and Bayesian analyses are applied. A survey of close to 50,000 subjects in 26 countries is used as an illustration. In addition, the two methods are studied by Monte Carlo simulations. A list of considerations for choosing between the two methods is presented.</description><identifier>ISSN: 0049-1241</identifier><identifier>EISSN: 1552-8294</identifier><identifier>DOI: 10.1177/0049124117701488</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Bayesian Statistics ; Factor Analysis ; Foreign Countries ; Groups ; Item Response Theory ; Maximum Likelihood Statistics ; Measurement ; Statistical Analysis</subject><ispartof>Sociological methods & research, 2018-11, Vol.47 (4), p.637-664</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-c27e210c6addeabc6fbf2ea9aa35eefba979c998507f374b99b54e268707c6973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0049124117701488$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0049124117701488$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21799,27903,27904,43600,43601</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1194089$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Muthén, Bengt</creatorcontrib><creatorcontrib>Asparouhov, Tihomir</creatorcontrib><title>Recent Methods for the Study of Measurement Invariance With Many Groups: Alignment and Random Effects</title><title>Sociological methods & research</title><description>This article reviews and compares recently proposed factor analytic and item response theory approaches to the study of invariance across groups. Two methods are described and contrasted. The alignment method considers the groups as a fixed mode of variation, while the random-intercept, random-loading two-level method considers the groups as a random mode of variation. Both maximum likelihood and Bayesian analyses are applied. A survey of close to 50,000 subjects in 26 countries is used as an illustration. In addition, the two methods are studied by Monte Carlo simulations. A list of considerations for choosing between the two methods is presented.</description><subject>Bayesian Statistics</subject><subject>Factor Analysis</subject><subject>Foreign Countries</subject><subject>Groups</subject><subject>Item Response Theory</subject><subject>Maximum Likelihood Statistics</subject><subject>Measurement</subject><subject>Statistical Analysis</subject><issn>0049-1241</issn><issn>1552-8294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRsFbvXoT9AtHZzSabPUqpbaVF8A8ew2Qza1NsUnYTId_ehIoHwcvMwO-9B28YuxZwK4TWdwDKCKnGG4TKshM2EUkio0wadcomI45Gfs4uQtgBCKkhnrDFM1mqW76hdtuUgbvG83ZL_KXtyp43bgAYOk_7UbSqv9BXWFvi71W75Ruse77wTXcIl-zM4Wegq589ZW8P89fZMlo_LVaz-3VkZZK2w9QkBdgUy5KwsKkrnCQ0iHFC5Ao02lhjsgS0i7UqjCkSRTLNNGibGh1PGRxzrW9C8OTyg6_26PtcQD6Wz_8-YrDcHC3kK_srnz8KYRRkZuDRkQf8oHzXdL4eGvyf9w0o9Gbu</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Muthén, Bengt</creator><creator>Asparouhov, Tihomir</creator><general>SAGE Publications</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201811</creationdate><title>Recent Methods for the Study of Measurement Invariance With Many Groups</title><author>Muthén, Bengt ; Asparouhov, Tihomir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-c27e210c6addeabc6fbf2ea9aa35eefba979c998507f374b99b54e268707c6973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayesian Statistics</topic><topic>Factor Analysis</topic><topic>Foreign Countries</topic><topic>Groups</topic><topic>Item Response Theory</topic><topic>Maximum Likelihood Statistics</topic><topic>Measurement</topic><topic>Statistical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muthén, Bengt</creatorcontrib><creatorcontrib>Asparouhov, Tihomir</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><jtitle>Sociological methods & research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muthén, Bengt</au><au>Asparouhov, Tihomir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1194089</ericid><atitle>Recent Methods for the Study of Measurement Invariance With Many Groups: Alignment and Random Effects</atitle><jtitle>Sociological methods & research</jtitle><date>2018-11</date><risdate>2018</risdate><volume>47</volume><issue>4</issue><spage>637</spage><epage>664</epage><pages>637-664</pages><issn>0049-1241</issn><eissn>1552-8294</eissn><abstract>This article reviews and compares recently proposed factor analytic and item response theory approaches to the study of invariance across groups. Two methods are described and contrasted. The alignment method considers the groups as a fixed mode of variation, while the random-intercept, random-loading two-level method considers the groups as a random mode of variation. Both maximum likelihood and Bayesian analyses are applied. A survey of close to 50,000 subjects in 26 countries is used as an illustration. In addition, the two methods are studied by Monte Carlo simulations. A list of considerations for choosing between the two methods is presented.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/0049124117701488</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0049-1241 |
ispartof | Sociological methods & research, 2018-11, Vol.47 (4), p.637-664 |
issn | 0049-1241 1552-8294 |
language | eng |
recordid | cdi_crossref_primary_10_1177_0049124117701488 |
source | SAGE Complete A-Z List |
subjects | Bayesian Statistics Factor Analysis Foreign Countries Groups Item Response Theory Maximum Likelihood Statistics Measurement Statistical Analysis |
title | Recent Methods for the Study of Measurement Invariance With Many Groups: Alignment and Random Effects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A21%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-eric_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Methods%20for%20the%20Study%20of%20Measurement%20Invariance%20With%20Many%20Groups:%20Alignment%20and%20Random%20Effects&rft.jtitle=Sociological%20methods%20&%20research&rft.au=Muth%C3%A9n,%20Bengt&rft.date=2018-11&rft.volume=47&rft.issue=4&rft.spage=637&rft.epage=664&rft.pages=637-664&rft.issn=0049-1241&rft.eissn=1552-8294&rft_id=info:doi/10.1177/0049124117701488&rft_dat=%3Ceric_cross%3EEJ1194089%3C/eric_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ericid=EJ1194089&rft_sage_id=10.1177_0049124117701488&rfr_iscdi=true |