Recent Methods for the Study of Measurement Invariance With Many Groups: Alignment and Random Effects

This article reviews and compares recently proposed factor analytic and item response theory approaches to the study of invariance across groups. Two methods are described and contrasted. The alignment method considers the groups as a fixed mode of variation, while the random-intercept, random-loadi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sociological methods & research 2018-11, Vol.47 (4), p.637-664
Hauptverfasser: Muthén, Bengt, Asparouhov, Tihomir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 664
container_issue 4
container_start_page 637
container_title Sociological methods & research
container_volume 47
creator Muthén, Bengt
Asparouhov, Tihomir
description This article reviews and compares recently proposed factor analytic and item response theory approaches to the study of invariance across groups. Two methods are described and contrasted. The alignment method considers the groups as a fixed mode of variation, while the random-intercept, random-loading two-level method considers the groups as a random mode of variation. Both maximum likelihood and Bayesian analyses are applied. A survey of close to 50,000 subjects in 26 countries is used as an illustration. In addition, the two methods are studied by Monte Carlo simulations. A list of considerations for choosing between the two methods is presented.
doi_str_mv 10.1177/0049124117701488
format Article
fullrecord <record><control><sourceid>eric_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_0049124117701488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1194089</ericid><sage_id>10.1177_0049124117701488</sage_id><sourcerecordid>EJ1194089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-c27e210c6addeabc6fbf2ea9aa35eefba979c998507f374b99b54e268707c6973</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFbvXoT9AtHZzSabPUqpbaVF8A8ew2Qza1NsUnYTId_ehIoHwcvMwO-9B28YuxZwK4TWdwDKCKnGG4TKshM2EUkio0wadcomI45Gfs4uQtgBCKkhnrDFM1mqW76hdtuUgbvG83ZL_KXtyp43bgAYOk_7UbSqv9BXWFvi71W75Ruse77wTXcIl-zM4Wegq589ZW8P89fZMlo_LVaz-3VkZZK2w9QkBdgUy5KwsKkrnCQ0iHFC5Ao02lhjsgS0i7UqjCkSRTLNNGibGh1PGRxzrW9C8OTyg6_26PtcQD6Wz_8-YrDcHC3kK_srnz8KYRRkZuDRkQf8oHzXdL4eGvyf9w0o9Gbu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Recent Methods for the Study of Measurement Invariance With Many Groups: Alignment and Random Effects</title><source>SAGE Complete A-Z List</source><creator>Muthén, Bengt ; Asparouhov, Tihomir</creator><creatorcontrib>Muthén, Bengt ; Asparouhov, Tihomir</creatorcontrib><description>This article reviews and compares recently proposed factor analytic and item response theory approaches to the study of invariance across groups. Two methods are described and contrasted. The alignment method considers the groups as a fixed mode of variation, while the random-intercept, random-loading two-level method considers the groups as a random mode of variation. Both maximum likelihood and Bayesian analyses are applied. A survey of close to 50,000 subjects in 26 countries is used as an illustration. In addition, the two methods are studied by Monte Carlo simulations. A list of considerations for choosing between the two methods is presented.</description><identifier>ISSN: 0049-1241</identifier><identifier>EISSN: 1552-8294</identifier><identifier>DOI: 10.1177/0049124117701488</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Bayesian Statistics ; Factor Analysis ; Foreign Countries ; Groups ; Item Response Theory ; Maximum Likelihood Statistics ; Measurement ; Statistical Analysis</subject><ispartof>Sociological methods &amp; research, 2018-11, Vol.47 (4), p.637-664</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-c27e210c6addeabc6fbf2ea9aa35eefba979c998507f374b99b54e268707c6973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0049124117701488$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0049124117701488$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21799,27903,27904,43600,43601</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1194089$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Muthén, Bengt</creatorcontrib><creatorcontrib>Asparouhov, Tihomir</creatorcontrib><title>Recent Methods for the Study of Measurement Invariance With Many Groups: Alignment and Random Effects</title><title>Sociological methods &amp; research</title><description>This article reviews and compares recently proposed factor analytic and item response theory approaches to the study of invariance across groups. Two methods are described and contrasted. The alignment method considers the groups as a fixed mode of variation, while the random-intercept, random-loading two-level method considers the groups as a random mode of variation. Both maximum likelihood and Bayesian analyses are applied. A survey of close to 50,000 subjects in 26 countries is used as an illustration. In addition, the two methods are studied by Monte Carlo simulations. A list of considerations for choosing between the two methods is presented.</description><subject>Bayesian Statistics</subject><subject>Factor Analysis</subject><subject>Foreign Countries</subject><subject>Groups</subject><subject>Item Response Theory</subject><subject>Maximum Likelihood Statistics</subject><subject>Measurement</subject><subject>Statistical Analysis</subject><issn>0049-1241</issn><issn>1552-8294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRsFbvXoT9AtHZzSabPUqpbaVF8A8ew2Qza1NsUnYTId_ehIoHwcvMwO-9B28YuxZwK4TWdwDKCKnGG4TKshM2EUkio0wadcomI45Gfs4uQtgBCKkhnrDFM1mqW76hdtuUgbvG83ZL_KXtyp43bgAYOk_7UbSqv9BXWFvi71W75Ruse77wTXcIl-zM4Wegq589ZW8P89fZMlo_LVaz-3VkZZK2w9QkBdgUy5KwsKkrnCQ0iHFC5Ao02lhjsgS0i7UqjCkSRTLNNGibGh1PGRxzrW9C8OTyg6_26PtcQD6Wz_8-YrDcHC3kK_srnz8KYRRkZuDRkQf8oHzXdL4eGvyf9w0o9Gbu</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Muthén, Bengt</creator><creator>Asparouhov, Tihomir</creator><general>SAGE Publications</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201811</creationdate><title>Recent Methods for the Study of Measurement Invariance With Many Groups</title><author>Muthén, Bengt ; Asparouhov, Tihomir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-c27e210c6addeabc6fbf2ea9aa35eefba979c998507f374b99b54e268707c6973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayesian Statistics</topic><topic>Factor Analysis</topic><topic>Foreign Countries</topic><topic>Groups</topic><topic>Item Response Theory</topic><topic>Maximum Likelihood Statistics</topic><topic>Measurement</topic><topic>Statistical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muthén, Bengt</creatorcontrib><creatorcontrib>Asparouhov, Tihomir</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><jtitle>Sociological methods &amp; research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muthén, Bengt</au><au>Asparouhov, Tihomir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1194089</ericid><atitle>Recent Methods for the Study of Measurement Invariance With Many Groups: Alignment and Random Effects</atitle><jtitle>Sociological methods &amp; research</jtitle><date>2018-11</date><risdate>2018</risdate><volume>47</volume><issue>4</issue><spage>637</spage><epage>664</epage><pages>637-664</pages><issn>0049-1241</issn><eissn>1552-8294</eissn><abstract>This article reviews and compares recently proposed factor analytic and item response theory approaches to the study of invariance across groups. Two methods are described and contrasted. The alignment method considers the groups as a fixed mode of variation, while the random-intercept, random-loading two-level method considers the groups as a random mode of variation. Both maximum likelihood and Bayesian analyses are applied. A survey of close to 50,000 subjects in 26 countries is used as an illustration. In addition, the two methods are studied by Monte Carlo simulations. A list of considerations for choosing between the two methods is presented.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/0049124117701488</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0049-1241
ispartof Sociological methods & research, 2018-11, Vol.47 (4), p.637-664
issn 0049-1241
1552-8294
language eng
recordid cdi_crossref_primary_10_1177_0049124117701488
source SAGE Complete A-Z List
subjects Bayesian Statistics
Factor Analysis
Foreign Countries
Groups
Item Response Theory
Maximum Likelihood Statistics
Measurement
Statistical Analysis
title Recent Methods for the Study of Measurement Invariance With Many Groups: Alignment and Random Effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A21%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-eric_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Methods%20for%20the%20Study%20of%20Measurement%20Invariance%20With%20Many%20Groups:%20Alignment%20and%20Random%20Effects&rft.jtitle=Sociological%20methods%20&%20research&rft.au=Muth%C3%A9n,%20Bengt&rft.date=2018-11&rft.volume=47&rft.issue=4&rft.spage=637&rft.epage=664&rft.pages=637-664&rft.issn=0049-1241&rft.eissn=1552-8294&rft_id=info:doi/10.1177/0049124117701488&rft_dat=%3Ceric_cross%3EEJ1194089%3C/eric_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ericid=EJ1194089&rft_sage_id=10.1177_0049124117701488&rfr_iscdi=true