Improving Linearly Implicit Quantized State System Methods

In this article we propose a modification to Linearly Implicit Quantized State System Methods (LIQSS), a family of methods for solving stiff Ordinary Differential Equations (ODEs) that replace the classic time discretization by the quantization of the state variables. LIQSS methods were designed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Simulation (San Diego, Calif.) Calif.), 2019-02, Vol.95 (2), p.127-144
Hauptverfasser: Di Pietro, Franco, Migoni, Gustavo, Kofman, Ernesto
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue 2
container_start_page 127
container_title Simulation (San Diego, Calif.)
container_volume 95
creator Di Pietro, Franco
Migoni, Gustavo
Kofman, Ernesto
description In this article we propose a modification to Linearly Implicit Quantized State System Methods (LIQSS), a family of methods for solving stiff Ordinary Differential Equations (ODEs) that replace the classic time discretization by the quantization of the state variables. LIQSS methods were designed to efficiently simulate stiff systems, but they only work when the system has a particular structure. The proposed modification overcomes this limitation, allowing the algorithms to efficiently simulate stiff systems with more general structures. Besides describing the new methods and their algorithmic descriptions, the article analyzes the algorithms performance in the simulation of some complex systems.
doi_str_mv 10.1177/0037549718766689
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_0037549718766689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0037549718766689</sage_id><sourcerecordid>10.1177_0037549718766689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-5239220170c6ff26f44f4168a016ba448455cde36cfb7e53643bc77b4e69c7e83</originalsourceid><addsrcrecordid>eNp1T0tLxDAYDKJgXb17zB-I5mvSJPUmi4-FisjquaRpsmbpY0mywvrrbVlPgqeBeTGD0DXQGwApbyllsuClBCWFEKo8QRlIDoQBY6com2Uy6-foIsYtpVCAFBm6W_W7MH75YYMrP1gdugOeqM4bn_DbXg_Jf9sWr5NOFq8PMdkev9j0ObbxEp053UV79YsL9PH48L58JtXr02p5XxGTK0ikyFmZ5xQkNcK5XDjOHQehNAXRaM4VLwrTWiaMa6QtmOCsMVI23IrSSKvYAtFjrwljjMG6ehd8r8OhBlrP3-u_36cIOUai3th6O-7DMC383_8D-W1YaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improving Linearly Implicit Quantized State System Methods</title><source>SAGE Complete A-Z List</source><creator>Di Pietro, Franco ; Migoni, Gustavo ; Kofman, Ernesto</creator><creatorcontrib>Di Pietro, Franco ; Migoni, Gustavo ; Kofman, Ernesto</creatorcontrib><description>In this article we propose a modification to Linearly Implicit Quantized State System Methods (LIQSS), a family of methods for solving stiff Ordinary Differential Equations (ODEs) that replace the classic time discretization by the quantization of the state variables. LIQSS methods were designed to efficiently simulate stiff systems, but they only work when the system has a particular structure. The proposed modification overcomes this limitation, allowing the algorithms to efficiently simulate stiff systems with more general structures. Besides describing the new methods and their algorithmic descriptions, the article analyzes the algorithms performance in the simulation of some complex systems.</description><identifier>ISSN: 0037-5497</identifier><identifier>EISSN: 1741-3133</identifier><identifier>DOI: 10.1177/0037549718766689</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Simulation (San Diego, Calif.), 2019-02, Vol.95 (2), p.127-144</ispartof><rights>The Author(s) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-5239220170c6ff26f44f4168a016ba448455cde36cfb7e53643bc77b4e69c7e83</citedby><cites>FETCH-LOGICAL-c281t-5239220170c6ff26f44f4168a016ba448455cde36cfb7e53643bc77b4e69c7e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0037549718766689$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0037549718766689$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,778,782,21806,27911,27912,43608,43609</link.rule.ids></links><search><creatorcontrib>Di Pietro, Franco</creatorcontrib><creatorcontrib>Migoni, Gustavo</creatorcontrib><creatorcontrib>Kofman, Ernesto</creatorcontrib><title>Improving Linearly Implicit Quantized State System Methods</title><title>Simulation (San Diego, Calif.)</title><description>In this article we propose a modification to Linearly Implicit Quantized State System Methods (LIQSS), a family of methods for solving stiff Ordinary Differential Equations (ODEs) that replace the classic time discretization by the quantization of the state variables. LIQSS methods were designed to efficiently simulate stiff systems, but they only work when the system has a particular structure. The proposed modification overcomes this limitation, allowing the algorithms to efficiently simulate stiff systems with more general structures. Besides describing the new methods and their algorithmic descriptions, the article analyzes the algorithms performance in the simulation of some complex systems.</description><issn>0037-5497</issn><issn>1741-3133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1T0tLxDAYDKJgXb17zB-I5mvSJPUmi4-FisjquaRpsmbpY0mywvrrbVlPgqeBeTGD0DXQGwApbyllsuClBCWFEKo8QRlIDoQBY6com2Uy6-foIsYtpVCAFBm6W_W7MH75YYMrP1gdugOeqM4bn_DbXg_Jf9sWr5NOFq8PMdkev9j0ObbxEp053UV79YsL9PH48L58JtXr02p5XxGTK0ikyFmZ5xQkNcK5XDjOHQehNAXRaM4VLwrTWiaMa6QtmOCsMVI23IrSSKvYAtFjrwljjMG6ehd8r8OhBlrP3-u_36cIOUai3th6O-7DMC383_8D-W1YaA</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Di Pietro, Franco</creator><creator>Migoni, Gustavo</creator><creator>Kofman, Ernesto</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201902</creationdate><title>Improving Linearly Implicit Quantized State System Methods</title><author>Di Pietro, Franco ; Migoni, Gustavo ; Kofman, Ernesto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-5239220170c6ff26f44f4168a016ba448455cde36cfb7e53643bc77b4e69c7e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Pietro, Franco</creatorcontrib><creatorcontrib>Migoni, Gustavo</creatorcontrib><creatorcontrib>Kofman, Ernesto</creatorcontrib><collection>CrossRef</collection><jtitle>Simulation (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Pietro, Franco</au><au>Migoni, Gustavo</au><au>Kofman, Ernesto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Linearly Implicit Quantized State System Methods</atitle><jtitle>Simulation (San Diego, Calif.)</jtitle><date>2019-02</date><risdate>2019</risdate><volume>95</volume><issue>2</issue><spage>127</spage><epage>144</epage><pages>127-144</pages><issn>0037-5497</issn><eissn>1741-3133</eissn><abstract>In this article we propose a modification to Linearly Implicit Quantized State System Methods (LIQSS), a family of methods for solving stiff Ordinary Differential Equations (ODEs) that replace the classic time discretization by the quantization of the state variables. LIQSS methods were designed to efficiently simulate stiff systems, but they only work when the system has a particular structure. The proposed modification overcomes this limitation, allowing the algorithms to efficiently simulate stiff systems with more general structures. Besides describing the new methods and their algorithmic descriptions, the article analyzes the algorithms performance in the simulation of some complex systems.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0037549718766689</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0037-5497
ispartof Simulation (San Diego, Calif.), 2019-02, Vol.95 (2), p.127-144
issn 0037-5497
1741-3133
language eng
recordid cdi_crossref_primary_10_1177_0037549718766689
source SAGE Complete A-Z List
title Improving Linearly Implicit Quantized State System Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Linearly%20Implicit%20Quantized%20State%20System%20Methods&rft.jtitle=Simulation%20(San%20Diego,%20Calif.)&rft.au=Di%20Pietro,%20Franco&rft.date=2019-02&rft.volume=95&rft.issue=2&rft.spage=127&rft.epage=144&rft.pages=127-144&rft.issn=0037-5497&rft.eissn=1741-3133&rft_id=info:doi/10.1177/0037549718766689&rft_dat=%3Csage_cross%3E10.1177_0037549718766689%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_0037549718766689&rfr_iscdi=true