Application of Model Predictive Control to Robust Management of Multiechelon Demand Networks in Semiconductor Manufacturing

Model predictive control (MPC) is presented as a robust, flexible decision framework for dynamically managing inventories and satisfying customer demand in demand networks. In this paper, a formulation and the benefits of an MPC-based, control-oriented tactical inventory management system meaningful...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Simulation (San Diego, Calif.) Calif.), 2003-03, Vol.79 (3), p.139-156
Hauptverfasser: Braun, Martin W., Rivera, Daniel E., Carlyle, W. Matthew, Kempf, Karl G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 156
container_issue 3
container_start_page 139
container_title Simulation (San Diego, Calif.)
container_volume 79
creator Braun, Martin W.
Rivera, Daniel E.
Carlyle, W. Matthew
Kempf, Karl G.
description Model predictive control (MPC) is presented as a robust, flexible decision framework for dynamically managing inventories and satisfying customer demand in demand networks. In this paper, a formulation and the benefits of an MPC-based, control-oriented tactical inventory management system meaningful to the semiconductor industry are presented via two significant examples. The translation of available information in the supply chain problem into MPC variables is demonstrated with a single-product, two-node supply chain example. Simulations demonstrating the ability of a properly tuned MPC control system to maintain performance and robustness despite plant-model mismatch are shown. Insights gained from these simulations are used to formulate a partially decentralized MPC implementation for a six-node, two-product, three-echelon demand network problem developed by Intel Corporation. These simulations show that the demand network is well managed under conditions that involve simultaneous demand forecast inaccuracies and plant-model mismatch.
doi_str_mv 10.1177/0037549703255637
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_0037549703255637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0037549703255637</sage_id><sourcerecordid>10.1177_0037549703255637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-e24f9c3a65e0c2da0ff7e03cc08f872bbe021c909a1026d1632196f13556e6c73</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWwZ-kfCIztJm6WVXlKLSAe68h1xsUlsSvbASF-noSyQmI1izvnauYQcsrgjDEpzwGEzCelBMHzvBByj4yYnLBMMCH2yWiIsyE_JEcxbgBYzmQxIl-z7baxWiXrHfWGLn2NDX0IWFud7DvSuXcp-IYmTx_9qouJLpVTa2zRpR-ga5JF_YpNX3CBrXI1vcP04cNbpNbRJ2yt9q7udPJhYDujdOqCdetjcmBUE_Hkd47Jy9Xl8_wmW9xf385ni0xzWaYM-cSUWqgiR9C8VmCMRBBaw9RMJV-tEDjTJZSKAS9qVgjOysIw0XvAQksxJrDr1cHHGNBU22BbFT4rBtUgr_orr0eyHRL7V6uN74LrL_x__xsuTHDq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of Model Predictive Control to Robust Management of Multiechelon Demand Networks in Semiconductor Manufacturing</title><source>SAGE Complete</source><creator>Braun, Martin W. ; Rivera, Daniel E. ; Carlyle, W. Matthew ; Kempf, Karl G.</creator><creatorcontrib>Braun, Martin W. ; Rivera, Daniel E. ; Carlyle, W. Matthew ; Kempf, Karl G.</creatorcontrib><description>Model predictive control (MPC) is presented as a robust, flexible decision framework for dynamically managing inventories and satisfying customer demand in demand networks. In this paper, a formulation and the benefits of an MPC-based, control-oriented tactical inventory management system meaningful to the semiconductor industry are presented via two significant examples. The translation of available information in the supply chain problem into MPC variables is demonstrated with a single-product, two-node supply chain example. Simulations demonstrating the ability of a properly tuned MPC control system to maintain performance and robustness despite plant-model mismatch are shown. Insights gained from these simulations are used to formulate a partially decentralized MPC implementation for a six-node, two-product, three-echelon demand network problem developed by Intel Corporation. These simulations show that the demand network is well managed under conditions that involve simultaneous demand forecast inaccuracies and plant-model mismatch.</description><identifier>ISSN: 0037-5497</identifier><identifier>EISSN: 1741-3133</identifier><identifier>DOI: 10.1177/0037549703255637</identifier><language>eng</language><publisher>SAGE Publications</publisher><ispartof>Simulation (San Diego, Calif.), 2003-03, Vol.79 (3), p.139-156</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-e24f9c3a65e0c2da0ff7e03cc08f872bbe021c909a1026d1632196f13556e6c73</citedby><cites>FETCH-LOGICAL-c279t-e24f9c3a65e0c2da0ff7e03cc08f872bbe021c909a1026d1632196f13556e6c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0037549703255637$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0037549703255637$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21799,27903,27904,43600,43601</link.rule.ids></links><search><creatorcontrib>Braun, Martin W.</creatorcontrib><creatorcontrib>Rivera, Daniel E.</creatorcontrib><creatorcontrib>Carlyle, W. Matthew</creatorcontrib><creatorcontrib>Kempf, Karl G.</creatorcontrib><title>Application of Model Predictive Control to Robust Management of Multiechelon Demand Networks in Semiconductor Manufacturing</title><title>Simulation (San Diego, Calif.)</title><description>Model predictive control (MPC) is presented as a robust, flexible decision framework for dynamically managing inventories and satisfying customer demand in demand networks. In this paper, a formulation and the benefits of an MPC-based, control-oriented tactical inventory management system meaningful to the semiconductor industry are presented via two significant examples. The translation of available information in the supply chain problem into MPC variables is demonstrated with a single-product, two-node supply chain example. Simulations demonstrating the ability of a properly tuned MPC control system to maintain performance and robustness despite plant-model mismatch are shown. Insights gained from these simulations are used to formulate a partially decentralized MPC implementation for a six-node, two-product, three-echelon demand network problem developed by Intel Corporation. These simulations show that the demand network is well managed under conditions that involve simultaneous demand forecast inaccuracies and plant-model mismatch.</description><issn>0037-5497</issn><issn>1741-3133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWwZ-kfCIztJm6WVXlKLSAe68h1xsUlsSvbASF-noSyQmI1izvnauYQcsrgjDEpzwGEzCelBMHzvBByj4yYnLBMMCH2yWiIsyE_JEcxbgBYzmQxIl-z7baxWiXrHfWGLn2NDX0IWFud7DvSuXcp-IYmTx_9qouJLpVTa2zRpR-ga5JF_YpNX3CBrXI1vcP04cNbpNbRJ2yt9q7udPJhYDujdOqCdetjcmBUE_Hkd47Jy9Xl8_wmW9xf385ni0xzWaYM-cSUWqgiR9C8VmCMRBBaw9RMJV-tEDjTJZSKAS9qVgjOysIw0XvAQksxJrDr1cHHGNBU22BbFT4rBtUgr_orr0eyHRL7V6uN74LrL_x__xsuTHDq</recordid><startdate>200303</startdate><enddate>200303</enddate><creator>Braun, Martin W.</creator><creator>Rivera, Daniel E.</creator><creator>Carlyle, W. Matthew</creator><creator>Kempf, Karl G.</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200303</creationdate><title>Application of Model Predictive Control to Robust Management of Multiechelon Demand Networks in Semiconductor Manufacturing</title><author>Braun, Martin W. ; Rivera, Daniel E. ; Carlyle, W. Matthew ; Kempf, Karl G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-e24f9c3a65e0c2da0ff7e03cc08f872bbe021c909a1026d1632196f13556e6c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braun, Martin W.</creatorcontrib><creatorcontrib>Rivera, Daniel E.</creatorcontrib><creatorcontrib>Carlyle, W. Matthew</creatorcontrib><creatorcontrib>Kempf, Karl G.</creatorcontrib><collection>CrossRef</collection><jtitle>Simulation (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braun, Martin W.</au><au>Rivera, Daniel E.</au><au>Carlyle, W. Matthew</au><au>Kempf, Karl G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Model Predictive Control to Robust Management of Multiechelon Demand Networks in Semiconductor Manufacturing</atitle><jtitle>Simulation (San Diego, Calif.)</jtitle><date>2003-03</date><risdate>2003</risdate><volume>79</volume><issue>3</issue><spage>139</spage><epage>156</epage><pages>139-156</pages><issn>0037-5497</issn><eissn>1741-3133</eissn><abstract>Model predictive control (MPC) is presented as a robust, flexible decision framework for dynamically managing inventories and satisfying customer demand in demand networks. In this paper, a formulation and the benefits of an MPC-based, control-oriented tactical inventory management system meaningful to the semiconductor industry are presented via two significant examples. The translation of available information in the supply chain problem into MPC variables is demonstrated with a single-product, two-node supply chain example. Simulations demonstrating the ability of a properly tuned MPC control system to maintain performance and robustness despite plant-model mismatch are shown. Insights gained from these simulations are used to formulate a partially decentralized MPC implementation for a six-node, two-product, three-echelon demand network problem developed by Intel Corporation. These simulations show that the demand network is well managed under conditions that involve simultaneous demand forecast inaccuracies and plant-model mismatch.</abstract><pub>SAGE Publications</pub><doi>10.1177/0037549703255637</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0037-5497
ispartof Simulation (San Diego, Calif.), 2003-03, Vol.79 (3), p.139-156
issn 0037-5497
1741-3133
language eng
recordid cdi_crossref_primary_10_1177_0037549703255637
source SAGE Complete
title Application of Model Predictive Control to Robust Management of Multiechelon Demand Networks in Semiconductor Manufacturing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Model%20Predictive%20Control%20to%20Robust%20Management%20of%20Multiechelon%20Demand%20Networks%20in%20Semiconductor%20Manufacturing&rft.jtitle=Simulation%20(San%20Diego,%20Calif.)&rft.au=Braun,%20Martin%20W.&rft.date=2003-03&rft.volume=79&rft.issue=3&rft.spage=139&rft.epage=156&rft.pages=139-156&rft.issn=0037-5497&rft.eissn=1741-3133&rft_id=info:doi/10.1177/0037549703255637&rft_dat=%3Csage_cross%3E10.1177_0037549703255637%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_0037549703255637&rfr_iscdi=true