A Global Test for the Goodness of Fit of Generalized Linear Models : An Estimating Equation Approach

Summary Generalized linear models are used to analyze a wide variety of discrete and continuous data with possible overdispersion under the assumption that the data follow an exponential family of distributions. The violation of this assumption may have adverse effects on the statistical inferences....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin - Calcutta Statistical Association 2005-03, Vol.56 (1-4), p.251-282
Hauptverfasser: Rao, R. Prabhakar, Sutradhar, B.C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 282
container_issue 1-4
container_start_page 251
container_title Bulletin - Calcutta Statistical Association
container_volume 56
creator Rao, R. Prabhakar
Sutradhar, B.C.
description Summary Generalized linear models are used to analyze a wide variety of discrete and continuous data with possible overdispersion under the assumption that the data follow an exponential family of distributions. The violation of this assumption may have adverse effects on the statistical inferences. The existing goodness of fit tests for checking this assumption are valid only for a standard exponential family of distributions with no overdispersion. In this paper, we develop a global goodness of fit test for the general exponential family of distributions which may or may not contain overdispersion. The proposed statistic has asymptotically standard Gaussian distribution which should be easy to implement.
doi_str_mv 10.1177/0008068320050514
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_0008068320050514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0008068320050514</sage_id><sourcerecordid>10.1177_0008068320050514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c149t-7768791be03e820cd659dd85cd02d26bc00876dc194159059606bd4f2a2b8c53</originalsourceid><addsrcrecordid>eNp1ULFOwzAUtBBIVKU74_uBwLMTOzZbVLUBqYile-TYThsU7GKnA3w9icqExHQn3bvTvSPknuIDpWX5iIgShcwZIkdOiyuyYAUXmSgEuyaLWc5m_ZasUupbzFExKQVfEFtBPYRWD7B3aYQuRBiPDuoQrHcpQehg248z1M67qIf-21nY9d7pCK_BuiHBE1QeNmnsP_TY-wNsPs8TCR6q0ykGbY535KbTQ3KrX1yS_XazXz9nu7f6ZV3tMkMLNWZlKWSpaOswd5KhsYIrayU3FpllojXTG6WwhqqCcoVcCRStLTqmWSsNz5cEL7EmhpSi65pTnDrFr4ZiM-_U_N1psmQXS9IH17yHc_RTwf_vfwCAT2Xj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Global Test for the Goodness of Fit of Generalized Linear Models : An Estimating Equation Approach</title><source>Access via SAGE</source><creator>Rao, R. Prabhakar ; Sutradhar, B.C.</creator><creatorcontrib>Rao, R. Prabhakar ; Sutradhar, B.C.</creatorcontrib><description>Summary Generalized linear models are used to analyze a wide variety of discrete and continuous data with possible overdispersion under the assumption that the data follow an exponential family of distributions. The violation of this assumption may have adverse effects on the statistical inferences. The existing goodness of fit tests for checking this assumption are valid only for a standard exponential family of distributions with no overdispersion. In this paper, we develop a global goodness of fit test for the general exponential family of distributions which may or may not contain overdispersion. The proposed statistic has asymptotically standard Gaussian distribution which should be easy to implement.</description><identifier>ISSN: 0008-0683</identifier><identifier>EISSN: 2456-6462</identifier><identifier>DOI: 10.1177/0008068320050514</identifier><language>eng</language><publisher>New Delhi, India: SAGE Publications</publisher><ispartof>Bulletin - Calcutta Statistical Association, 2005-03, Vol.56 (1-4), p.251-282</ispartof><rights>2005 SAGE Publications</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0008068320050514$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0008068320050514$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Rao, R. Prabhakar</creatorcontrib><creatorcontrib>Sutradhar, B.C.</creatorcontrib><title>A Global Test for the Goodness of Fit of Generalized Linear Models : An Estimating Equation Approach</title><title>Bulletin - Calcutta Statistical Association</title><description>Summary Generalized linear models are used to analyze a wide variety of discrete and continuous data with possible overdispersion under the assumption that the data follow an exponential family of distributions. The violation of this assumption may have adverse effects on the statistical inferences. The existing goodness of fit tests for checking this assumption are valid only for a standard exponential family of distributions with no overdispersion. In this paper, we develop a global goodness of fit test for the general exponential family of distributions which may or may not contain overdispersion. The proposed statistic has asymptotically standard Gaussian distribution which should be easy to implement.</description><issn>0008-0683</issn><issn>2456-6462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1ULFOwzAUtBBIVKU74_uBwLMTOzZbVLUBqYile-TYThsU7GKnA3w9icqExHQn3bvTvSPknuIDpWX5iIgShcwZIkdOiyuyYAUXmSgEuyaLWc5m_ZasUupbzFExKQVfEFtBPYRWD7B3aYQuRBiPDuoQrHcpQehg248z1M67qIf-21nY9d7pCK_BuiHBE1QeNmnsP_TY-wNsPs8TCR6q0ykGbY535KbTQ3KrX1yS_XazXz9nu7f6ZV3tMkMLNWZlKWSpaOswd5KhsYIrayU3FpllojXTG6WwhqqCcoVcCRStLTqmWSsNz5cEL7EmhpSi65pTnDrFr4ZiM-_U_N1psmQXS9IH17yHc_RTwf_vfwCAT2Xj</recordid><startdate>200503</startdate><enddate>200503</enddate><creator>Rao, R. Prabhakar</creator><creator>Sutradhar, B.C.</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200503</creationdate><title>A Global Test for the Goodness of Fit of Generalized Linear Models : An Estimating Equation Approach</title><author>Rao, R. Prabhakar ; Sutradhar, B.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c149t-7768791be03e820cd659dd85cd02d26bc00876dc194159059606bd4f2a2b8c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rao, R. Prabhakar</creatorcontrib><creatorcontrib>Sutradhar, B.C.</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin - Calcutta Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rao, R. Prabhakar</au><au>Sutradhar, B.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Global Test for the Goodness of Fit of Generalized Linear Models : An Estimating Equation Approach</atitle><jtitle>Bulletin - Calcutta Statistical Association</jtitle><date>2005-03</date><risdate>2005</risdate><volume>56</volume><issue>1-4</issue><spage>251</spage><epage>282</epage><pages>251-282</pages><issn>0008-0683</issn><eissn>2456-6462</eissn><abstract>Summary Generalized linear models are used to analyze a wide variety of discrete and continuous data with possible overdispersion under the assumption that the data follow an exponential family of distributions. The violation of this assumption may have adverse effects on the statistical inferences. The existing goodness of fit tests for checking this assumption are valid only for a standard exponential family of distributions with no overdispersion. In this paper, we develop a global goodness of fit test for the general exponential family of distributions which may or may not contain overdispersion. The proposed statistic has asymptotically standard Gaussian distribution which should be easy to implement.</abstract><cop>New Delhi, India</cop><pub>SAGE Publications</pub><doi>10.1177/0008068320050514</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-0683
ispartof Bulletin - Calcutta Statistical Association, 2005-03, Vol.56 (1-4), p.251-282
issn 0008-0683
2456-6462
language eng
recordid cdi_crossref_primary_10_1177_0008068320050514
source Access via SAGE
title A Global Test for the Goodness of Fit of Generalized Linear Models : An Estimating Equation Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T02%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Global%20Test%20for%20the%20Goodness%20of%20Fit%20of%20Generalized%20Linear%20Models%20:%20An%20Estimating%20Equation%20Approach&rft.jtitle=Bulletin%20-%20Calcutta%20Statistical%20Association&rft.au=Rao,%20R.%20Prabhakar&rft.date=2005-03&rft.volume=56&rft.issue=1-4&rft.spage=251&rft.epage=282&rft.pages=251-282&rft.issn=0008-0683&rft.eissn=2456-6462&rft_id=info:doi/10.1177/0008068320050514&rft_dat=%3Csage_cross%3E10.1177_0008068320050514%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_0008068320050514&rfr_iscdi=true