Identification of a Novel Secreted Protease from Pseudomonas aeruginosa that Causes Corneal Erosions
The purpose of this study was to identify a new Pseudomonas protease and determine its possible role in keratitis. Concentrated culture supernatants of the Pseudomonas aeruginosa strains PA103 and ATCC 19660 were analyzed by zymography. P. aeruginosa small protease (PASP) was purified from strain PA...
Gespeichert in:
Veröffentlicht in: | Investigative ophthalmology & visual science 2005-10, Vol.46 (10), p.3761-3768 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3768 |
---|---|
container_issue | 10 |
container_start_page | 3761 |
container_title | Investigative ophthalmology & visual science |
container_volume | 46 |
creator | Marquart, Mary E Caballero, Armando R Chomnawang, Mullika Thibodeaux, Brett A Twining, Sally S O'Callaghan, Richard J |
description | The purpose of this study was to identify a new Pseudomonas protease and determine its possible role in keratitis.
Concentrated culture supernatants of the Pseudomonas aeruginosa strains PA103 and ATCC 19660 were analyzed by zymography. P. aeruginosa small protease (PASP) was purified from strain PA103, and modified elastase B (LasB) was purified from strain ATCC 19660. SDS-PAGE and Western blot analysis were performed on purified PASP and modified LasB. PASP was further analyzed by mass spectrometry and amino-terminal sequencing. The Pasp gene was cloned and expressed, affinity-purified in denatured form from inclusion bodies, and refolded by removal of the denaturant. Purified recombinant PASP was analyzed by zymography for protease activity. PASP and heat-inactivated PASP were injected into rabbit corneas, and the corneas were monitored for erosions caused by protease activity.
Each strain produced a protease with a molecular mass of 80 kDa on zymograms. LasB antiserum identified the ATCC 19660 protease as modified LasB. Mass spectrometry defined the PA103 protease as having a molecular mass of 18.5 kDa. Amino-terminal sequencing and analysis of the P. aeruginosa genome sequence determined that the PA103 Pasp gene sequence was >99% identical with the PA0423 sequence of strain PAO1. Recombinant PASP was proteolytic, with a zymogram mass of 50 kDa. PASP purified from PA103 produced extensive corneal epithelial erosions, whereas heat-inactivated PASP produced no erosions.
PASP is a protease that has not been previously identified. It causes corneal epithelial erosions, indicating its likely activity as a virulence-promoting factor in Pseudomonas keratitis. |
doi_str_mv | 10.1167/iovs.04-1483 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1167_iovs_04_1483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16186360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-791591a3fa758a5695b6b35d0547200071c73b73fc62d6d09f13e314c25b19e03</originalsourceid><addsrcrecordid>eNpFkE1rFEEURQtRzGR051pqI27s-F7X1_RShmgCQQPqunld_SpT0t0Vqnoy5N_bwwxkdTeHc-EI8QHhCtG6rzE9lSvQFeqNeiVWaExdGbdRr8UKUNsKNOgLcVnKP4AasYa34gItbqyysBL9bc_THEP0NMc0yRQkyZ_piQf5m33mmXt5n9PMVFiGnEZ5X3jfpzFNVCRx3j_EKRWS845muaV94SK3KU9Mg7zOqSzS8k68CTQUfn_etfj7_frP9qa6-_XjdvvtrvLK4Fy5Bk2DpAI5syFjG9PZTpkejHY1ADj0TnVOBW_r3vbQBFSsUPvadNgwqLX4cvL65bhkDu1jjiPl5xahPcZqj7Fa0O0x1oJ_POGP-27k_gU-11mAT2eAiqchZJp8LC-cQ4X1YlqLzyduFx92h5i5LSMNw6LF9nA4aHv8V86i-g-rUYAR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Identification of a Novel Secreted Protease from Pseudomonas aeruginosa that Causes Corneal Erosions</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Marquart, Mary E ; Caballero, Armando R ; Chomnawang, Mullika ; Thibodeaux, Brett A ; Twining, Sally S ; O'Callaghan, Richard J</creator><creatorcontrib>Marquart, Mary E ; Caballero, Armando R ; Chomnawang, Mullika ; Thibodeaux, Brett A ; Twining, Sally S ; O'Callaghan, Richard J</creatorcontrib><description>The purpose of this study was to identify a new Pseudomonas protease and determine its possible role in keratitis.
Concentrated culture supernatants of the Pseudomonas aeruginosa strains PA103 and ATCC 19660 were analyzed by zymography. P. aeruginosa small protease (PASP) was purified from strain PA103, and modified elastase B (LasB) was purified from strain ATCC 19660. SDS-PAGE and Western blot analysis were performed on purified PASP and modified LasB. PASP was further analyzed by mass spectrometry and amino-terminal sequencing. The Pasp gene was cloned and expressed, affinity-purified in denatured form from inclusion bodies, and refolded by removal of the denaturant. Purified recombinant PASP was analyzed by zymography for protease activity. PASP and heat-inactivated PASP were injected into rabbit corneas, and the corneas were monitored for erosions caused by protease activity.
Each strain produced a protease with a molecular mass of 80 kDa on zymograms. LasB antiserum identified the ATCC 19660 protease as modified LasB. Mass spectrometry defined the PA103 protease as having a molecular mass of 18.5 kDa. Amino-terminal sequencing and analysis of the P. aeruginosa genome sequence determined that the PA103 Pasp gene sequence was >99% identical with the PA0423 sequence of strain PAO1. Recombinant PASP was proteolytic, with a zymogram mass of 50 kDa. PASP purified from PA103 produced extensive corneal epithelial erosions, whereas heat-inactivated PASP produced no erosions.
PASP is a protease that has not been previously identified. It causes corneal epithelial erosions, indicating its likely activity as a virulence-promoting factor in Pseudomonas keratitis.</description><identifier>ISSN: 0146-0404</identifier><identifier>ISSN: 1552-5783</identifier><identifier>EISSN: 1552-5783</identifier><identifier>DOI: 10.1167/iovs.04-1483</identifier><identifier>PMID: 16186360</identifier><identifier>CODEN: IOVSDA</identifier><language>eng</language><publisher>Rockville, MD: ARVO</publisher><subject>Amino Acid Sequence ; Animals ; Bacterial Proteins - isolation & purification ; Bacterial Proteins - pharmacology ; Base Sequence ; Biological and medical sciences ; Blotting, Western ; Cloning, Molecular ; Cornea - drug effects ; Cornea - pathology ; Corneal Diseases - chemically induced ; Corneal Diseases - pathology ; Diseases of cornea, anterior segment and sclera ; Electrophoresis, Polyacrylamide Gel ; Escherichia coli - genetics ; Eye and associated structures. Visual pathways and centers. Vision ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; Medical sciences ; Metalloendopeptidases - isolation & purification ; Metalloendopeptidases - pharmacology ; Molecular Sequence Data ; Molecular Weight ; Ophthalmology ; Pseudomonas aeruginosa - enzymology ; Rabbits ; Recombinant Proteins ; Serine Endopeptidases - genetics ; Serine Endopeptidases - isolation & purification ; Serine Endopeptidases - pharmacology ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Vertebrates: nervous system and sense organs</subject><ispartof>Investigative ophthalmology & visual science, 2005-10, Vol.46 (10), p.3761-3768</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-791591a3fa758a5695b6b35d0547200071c73b73fc62d6d09f13e314c25b19e03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17131248$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16186360$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marquart, Mary E</creatorcontrib><creatorcontrib>Caballero, Armando R</creatorcontrib><creatorcontrib>Chomnawang, Mullika</creatorcontrib><creatorcontrib>Thibodeaux, Brett A</creatorcontrib><creatorcontrib>Twining, Sally S</creatorcontrib><creatorcontrib>O'Callaghan, Richard J</creatorcontrib><title>Identification of a Novel Secreted Protease from Pseudomonas aeruginosa that Causes Corneal Erosions</title><title>Investigative ophthalmology & visual science</title><addtitle>Invest Ophthalmol Vis Sci</addtitle><description>The purpose of this study was to identify a new Pseudomonas protease and determine its possible role in keratitis.
Concentrated culture supernatants of the Pseudomonas aeruginosa strains PA103 and ATCC 19660 were analyzed by zymography. P. aeruginosa small protease (PASP) was purified from strain PA103, and modified elastase B (LasB) was purified from strain ATCC 19660. SDS-PAGE and Western blot analysis were performed on purified PASP and modified LasB. PASP was further analyzed by mass spectrometry and amino-terminal sequencing. The Pasp gene was cloned and expressed, affinity-purified in denatured form from inclusion bodies, and refolded by removal of the denaturant. Purified recombinant PASP was analyzed by zymography for protease activity. PASP and heat-inactivated PASP were injected into rabbit corneas, and the corneas were monitored for erosions caused by protease activity.
Each strain produced a protease with a molecular mass of 80 kDa on zymograms. LasB antiserum identified the ATCC 19660 protease as modified LasB. Mass spectrometry defined the PA103 protease as having a molecular mass of 18.5 kDa. Amino-terminal sequencing and analysis of the P. aeruginosa genome sequence determined that the PA103 Pasp gene sequence was >99% identical with the PA0423 sequence of strain PAO1. Recombinant PASP was proteolytic, with a zymogram mass of 50 kDa. PASP purified from PA103 produced extensive corneal epithelial erosions, whereas heat-inactivated PASP produced no erosions.
PASP is a protease that has not been previously identified. It causes corneal epithelial erosions, indicating its likely activity as a virulence-promoting factor in Pseudomonas keratitis.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Bacterial Proteins - isolation & purification</subject><subject>Bacterial Proteins - pharmacology</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Blotting, Western</subject><subject>Cloning, Molecular</subject><subject>Cornea - drug effects</subject><subject>Cornea - pathology</subject><subject>Corneal Diseases - chemically induced</subject><subject>Corneal Diseases - pathology</subject><subject>Diseases of cornea, anterior segment and sclera</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Escherichia coli - genetics</subject><subject>Eye and associated structures. Visual pathways and centers. Vision</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>Medical sciences</subject><subject>Metalloendopeptidases - isolation & purification</subject><subject>Metalloendopeptidases - pharmacology</subject><subject>Molecular Sequence Data</subject><subject>Molecular Weight</subject><subject>Ophthalmology</subject><subject>Pseudomonas aeruginosa - enzymology</subject><subject>Rabbits</subject><subject>Recombinant Proteins</subject><subject>Serine Endopeptidases - genetics</subject><subject>Serine Endopeptidases - isolation & purification</subject><subject>Serine Endopeptidases - pharmacology</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0146-0404</issn><issn>1552-5783</issn><issn>1552-5783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1rFEEURQtRzGR051pqI27s-F7X1_RShmgCQQPqunld_SpT0t0Vqnoy5N_bwwxkdTeHc-EI8QHhCtG6rzE9lSvQFeqNeiVWaExdGbdRr8UKUNsKNOgLcVnKP4AasYa34gItbqyysBL9bc_THEP0NMc0yRQkyZ_piQf5m33mmXt5n9PMVFiGnEZ5X3jfpzFNVCRx3j_EKRWS845muaV94SK3KU9Mg7zOqSzS8k68CTQUfn_etfj7_frP9qa6-_XjdvvtrvLK4Fy5Bk2DpAI5syFjG9PZTpkejHY1ADj0TnVOBW_r3vbQBFSsUPvadNgwqLX4cvL65bhkDu1jjiPl5xahPcZqj7Fa0O0x1oJ_POGP-27k_gU-11mAT2eAiqchZJp8LC-cQ4X1YlqLzyduFx92h5i5LSMNw6LF9nA4aHv8V86i-g-rUYAR</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Marquart, Mary E</creator><creator>Caballero, Armando R</creator><creator>Chomnawang, Mullika</creator><creator>Thibodeaux, Brett A</creator><creator>Twining, Sally S</creator><creator>O'Callaghan, Richard J</creator><general>ARVO</general><general>Association for Research in Vision and Ophtalmology</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20051001</creationdate><title>Identification of a Novel Secreted Protease from Pseudomonas aeruginosa that Causes Corneal Erosions</title><author>Marquart, Mary E ; Caballero, Armando R ; Chomnawang, Mullika ; Thibodeaux, Brett A ; Twining, Sally S ; O'Callaghan, Richard J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-791591a3fa758a5695b6b35d0547200071c73b73fc62d6d09f13e314c25b19e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Bacterial Proteins - isolation & purification</topic><topic>Bacterial Proteins - pharmacology</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Blotting, Western</topic><topic>Cloning, Molecular</topic><topic>Cornea - drug effects</topic><topic>Cornea - pathology</topic><topic>Corneal Diseases - chemically induced</topic><topic>Corneal Diseases - pathology</topic><topic>Diseases of cornea, anterior segment and sclera</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Escherichia coli - genetics</topic><topic>Eye and associated structures. Visual pathways and centers. Vision</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>Medical sciences</topic><topic>Metalloendopeptidases - isolation & purification</topic><topic>Metalloendopeptidases - pharmacology</topic><topic>Molecular Sequence Data</topic><topic>Molecular Weight</topic><topic>Ophthalmology</topic><topic>Pseudomonas aeruginosa - enzymology</topic><topic>Rabbits</topic><topic>Recombinant Proteins</topic><topic>Serine Endopeptidases - genetics</topic><topic>Serine Endopeptidases - isolation & purification</topic><topic>Serine Endopeptidases - pharmacology</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marquart, Mary E</creatorcontrib><creatorcontrib>Caballero, Armando R</creatorcontrib><creatorcontrib>Chomnawang, Mullika</creatorcontrib><creatorcontrib>Thibodeaux, Brett A</creatorcontrib><creatorcontrib>Twining, Sally S</creatorcontrib><creatorcontrib>O'Callaghan, Richard J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Investigative ophthalmology & visual science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marquart, Mary E</au><au>Caballero, Armando R</au><au>Chomnawang, Mullika</au><au>Thibodeaux, Brett A</au><au>Twining, Sally S</au><au>O'Callaghan, Richard J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of a Novel Secreted Protease from Pseudomonas aeruginosa that Causes Corneal Erosions</atitle><jtitle>Investigative ophthalmology & visual science</jtitle><addtitle>Invest Ophthalmol Vis Sci</addtitle><date>2005-10-01</date><risdate>2005</risdate><volume>46</volume><issue>10</issue><spage>3761</spage><epage>3768</epage><pages>3761-3768</pages><issn>0146-0404</issn><issn>1552-5783</issn><eissn>1552-5783</eissn><coden>IOVSDA</coden><abstract>The purpose of this study was to identify a new Pseudomonas protease and determine its possible role in keratitis.
Concentrated culture supernatants of the Pseudomonas aeruginosa strains PA103 and ATCC 19660 were analyzed by zymography. P. aeruginosa small protease (PASP) was purified from strain PA103, and modified elastase B (LasB) was purified from strain ATCC 19660. SDS-PAGE and Western blot analysis were performed on purified PASP and modified LasB. PASP was further analyzed by mass spectrometry and amino-terminal sequencing. The Pasp gene was cloned and expressed, affinity-purified in denatured form from inclusion bodies, and refolded by removal of the denaturant. Purified recombinant PASP was analyzed by zymography for protease activity. PASP and heat-inactivated PASP were injected into rabbit corneas, and the corneas were monitored for erosions caused by protease activity.
Each strain produced a protease with a molecular mass of 80 kDa on zymograms. LasB antiserum identified the ATCC 19660 protease as modified LasB. Mass spectrometry defined the PA103 protease as having a molecular mass of 18.5 kDa. Amino-terminal sequencing and analysis of the P. aeruginosa genome sequence determined that the PA103 Pasp gene sequence was >99% identical with the PA0423 sequence of strain PAO1. Recombinant PASP was proteolytic, with a zymogram mass of 50 kDa. PASP purified from PA103 produced extensive corneal epithelial erosions, whereas heat-inactivated PASP produced no erosions.
PASP is a protease that has not been previously identified. It causes corneal epithelial erosions, indicating its likely activity as a virulence-promoting factor in Pseudomonas keratitis.</abstract><cop>Rockville, MD</cop><pub>ARVO</pub><pmid>16186360</pmid><doi>10.1167/iovs.04-1483</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-0404 |
ispartof | Investigative ophthalmology & visual science, 2005-10, Vol.46 (10), p.3761-3768 |
issn | 0146-0404 1552-5783 1552-5783 |
language | eng |
recordid | cdi_crossref_primary_10_1167_iovs_04_1483 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Amino Acid Sequence Animals Bacterial Proteins - isolation & purification Bacterial Proteins - pharmacology Base Sequence Biological and medical sciences Blotting, Western Cloning, Molecular Cornea - drug effects Cornea - pathology Corneal Diseases - chemically induced Corneal Diseases - pathology Diseases of cornea, anterior segment and sclera Electrophoresis, Polyacrylamide Gel Escherichia coli - genetics Eye and associated structures. Visual pathways and centers. Vision Fundamental and applied biological sciences. Psychology Gene Expression Medical sciences Metalloendopeptidases - isolation & purification Metalloendopeptidases - pharmacology Molecular Sequence Data Molecular Weight Ophthalmology Pseudomonas aeruginosa - enzymology Rabbits Recombinant Proteins Serine Endopeptidases - genetics Serine Endopeptidases - isolation & purification Serine Endopeptidases - pharmacology Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization Vertebrates: nervous system and sense organs |
title | Identification of a Novel Secreted Protease from Pseudomonas aeruginosa that Causes Corneal Erosions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A52%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20a%20Novel%20Secreted%20Protease%20from%20Pseudomonas%20aeruginosa%20that%20Causes%20Corneal%20Erosions&rft.jtitle=Investigative%20ophthalmology%20&%20visual%20science&rft.au=Marquart,%20Mary%20E&rft.date=2005-10-01&rft.volume=46&rft.issue=10&rft.spage=3761&rft.epage=3768&rft.pages=3761-3768&rft.issn=0146-0404&rft.eissn=1552-5783&rft.coden=IOVSDA&rft_id=info:doi/10.1167/iovs.04-1483&rft_dat=%3Cpubmed_cross%3E16186360%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/16186360&rfr_iscdi=true |