COMMUTING MAPS: A SURVEY

A map f on a ring A is said to be commuting if f(x) commutes with x for every x ∈ A. The paper surveys the development of the theory of commuting maps and their applications. The following topics are discussed: commuting derivations, commuting additive maps, commuting traces of multiadditive maps, v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taiwanese journal of mathematics 2004-09, Vol.8 (3), p.361-397
1. Verfasser: Brešar, Matej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 397
container_issue 3
container_start_page 361
container_title Taiwanese journal of mathematics
container_volume 8
creator Brešar, Matej
description A map f on a ring A is said to be commuting if f(x) commutes with x for every x ∈ A. The paper surveys the development of the theory of commuting maps and their applications. The following topics are discussed: commuting derivations, commuting additive maps, commuting traces of multiadditive maps, various generalizations of the notion of a commuting map, and applications of results on commuting maps to different areas, in particular to Lie theory.
doi_str_mv 10.11650/twjm/1500407660
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_11650_twjm_1500407660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43833564</jstor_id><sourcerecordid>43833564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-148ebf4b97de0374b86a5262633dea3bdac7415c3fc9d10bb70c05903baa00ac3</originalsourceid><addsrcrecordid>eNpFj81Kw0AURgdRMFb33Qh5gdh7585f3IVQa6GxYhvBVZiZJGCwVGYC4ttbrejq23znwGFsinCDqCTMxo9hN0MJIEArBScs4ZyLTBmJpyxB4DqTwuhzdhHjAMCNQpWwabmuqnq7fFikVfG4uU2LdFM_Pc9fLtlZb99id_W7E1bfzbflfbZaL5Zlsco8gR4zFKZzvXC5bjsgLZxRVnLFFVHbWXKt9Vqg9NT7vEVwToMHmQM5awGspwmDo9eHfYyh65v38Lqz4bNBaH7Kmu-y5r_sgFwfkSGO-_D3F2SIpBL0BfOmSBU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>COMMUTING MAPS: A SURVEY</title><source>Jstor Complete Legacy</source><source>Project Euclid Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Brešar, Matej</creator><creatorcontrib>Brešar, Matej</creatorcontrib><description>A map f on a ring A is said to be commuting if f(x) commutes with x for every x ∈ A. The paper surveys the development of the theory of commuting maps and their applications. The following topics are discussed: commuting derivations, commuting additive maps, commuting traces of multiadditive maps, various generalizations of the notion of a commuting map, and applications of results on commuting maps to different areas, in particular to Lie theory.</description><identifier>ISSN: 1027-5487</identifier><identifier>EISSN: 2224-6851</identifier><identifier>DOI: 10.11650/twjm/1500407660</identifier><language>eng</language><publisher>Mathematical Society of the Republic of China (Taiwan)</publisher><subject>Algebra ; Commuting ; Linear algebra ; Logical proofs ; Mathematical rings ; Mathematical theorems ; Subrings ; SURVEY PAPER ; Von Neumann algebra</subject><ispartof>Taiwanese journal of mathematics, 2004-09, Vol.8 (3), p.361-397</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-148ebf4b97de0374b86a5262633dea3bdac7415c3fc9d10bb70c05903baa00ac3</citedby><cites>FETCH-LOGICAL-c307t-148ebf4b97de0374b86a5262633dea3bdac7415c3fc9d10bb70c05903baa00ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43833564$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43833564$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Brešar, Matej</creatorcontrib><title>COMMUTING MAPS: A SURVEY</title><title>Taiwanese journal of mathematics</title><description>A map f on a ring A is said to be commuting if f(x) commutes with x for every x ∈ A. The paper surveys the development of the theory of commuting maps and their applications. The following topics are discussed: commuting derivations, commuting additive maps, commuting traces of multiadditive maps, various generalizations of the notion of a commuting map, and applications of results on commuting maps to different areas, in particular to Lie theory.</description><subject>Algebra</subject><subject>Commuting</subject><subject>Linear algebra</subject><subject>Logical proofs</subject><subject>Mathematical rings</subject><subject>Mathematical theorems</subject><subject>Subrings</subject><subject>SURVEY PAPER</subject><subject>Von Neumann algebra</subject><issn>1027-5487</issn><issn>2224-6851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpFj81Kw0AURgdRMFb33Qh5gdh7585f3IVQa6GxYhvBVZiZJGCwVGYC4ttbrejq23znwGFsinCDqCTMxo9hN0MJIEArBScs4ZyLTBmJpyxB4DqTwuhzdhHjAMCNQpWwabmuqnq7fFikVfG4uU2LdFM_Pc9fLtlZb99id_W7E1bfzbflfbZaL5Zlsco8gR4zFKZzvXC5bjsgLZxRVnLFFVHbWXKt9Vqg9NT7vEVwToMHmQM5awGspwmDo9eHfYyh65v38Lqz4bNBaH7Kmu-y5r_sgFwfkSGO-_D3F2SIpBL0BfOmSBU</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Brešar, Matej</creator><general>Mathematical Society of the Republic of China (Taiwan)</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040901</creationdate><title>COMMUTING MAPS: A SURVEY</title><author>Brešar, Matej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-148ebf4b97de0374b86a5262633dea3bdac7415c3fc9d10bb70c05903baa00ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algebra</topic><topic>Commuting</topic><topic>Linear algebra</topic><topic>Logical proofs</topic><topic>Mathematical rings</topic><topic>Mathematical theorems</topic><topic>Subrings</topic><topic>SURVEY PAPER</topic><topic>Von Neumann algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brešar, Matej</creatorcontrib><collection>CrossRef</collection><jtitle>Taiwanese journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brešar, Matej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COMMUTING MAPS: A SURVEY</atitle><jtitle>Taiwanese journal of mathematics</jtitle><date>2004-09-01</date><risdate>2004</risdate><volume>8</volume><issue>3</issue><spage>361</spage><epage>397</epage><pages>361-397</pages><issn>1027-5487</issn><eissn>2224-6851</eissn><abstract>A map f on a ring A is said to be commuting if f(x) commutes with x for every x ∈ A. The paper surveys the development of the theory of commuting maps and their applications. The following topics are discussed: commuting derivations, commuting additive maps, commuting traces of multiadditive maps, various generalizations of the notion of a commuting map, and applications of results on commuting maps to different areas, in particular to Lie theory.</abstract><pub>Mathematical Society of the Republic of China (Taiwan)</pub><doi>10.11650/twjm/1500407660</doi><tpages>37</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1027-5487
ispartof Taiwanese journal of mathematics, 2004-09, Vol.8 (3), p.361-397
issn 1027-5487
2224-6851
language eng
recordid cdi_crossref_primary_10_11650_twjm_1500407660
source Jstor Complete Legacy; Project Euclid Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete; JSTOR Mathematics & Statistics
subjects Algebra
Commuting
Linear algebra
Logical proofs
Mathematical rings
Mathematical theorems
Subrings
SURVEY PAPER
Von Neumann algebra
title COMMUTING MAPS: A SURVEY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A37%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COMMUTING%20MAPS:%20A%20SURVEY&rft.jtitle=Taiwanese%20journal%20of%20mathematics&rft.au=Bre%C5%A1ar,%20Matej&rft.date=2004-09-01&rft.volume=8&rft.issue=3&rft.spage=361&rft.epage=397&rft.pages=361-397&rft.issn=1027-5487&rft.eissn=2224-6851&rft_id=info:doi/10.11650/twjm/1500407660&rft_dat=%3Cjstor_cross%3E43833564%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43833564&rfr_iscdi=true