Infinite Horizon Stochastic Delay Evolution Equations in Hilbert Spaces and Stochastic Maximum Principle
In this paper, a class of infinite horizon optimal control problems is established, where the state equation is given by a stochastic delay evolution equation (SDEE), and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation (ABSEE). Firstly, we extend...
Gespeichert in:
Veröffentlicht in: | Taiwanese journal of mathematics 2022-06, Vol.26 (3), p.635-665 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 665 |
---|---|
container_issue | 3 |
container_start_page | 635 |
container_title | Taiwanese journal of mathematics |
container_volume | 26 |
creator | Li, Han Zhou, Jianjun Dai, Haoran Xu, Biteng Dong, Wenxu |
description | In this paper, a class of infinite horizon optimal control problems is established, where the state equation is given by a stochastic delay evolution equation (SDEE), and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation (ABSEE). Firstly, we extend the form of Ito formula. After that, we establish the priori estimate for the solution to ABSEEs, and then the existence and uniqueness results of ABSEEs on in finite horizon are obtained. Finally, we establish necessary and sufficient conditions of stochastic maximum principle for infinite horizon optimal control problem in the form of Pontryagin’s maximum principle. |
doi_str_mv | 10.11650/tjm/211202 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_11650_tjm_211202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27159813</jstor_id><sourcerecordid>27159813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c213t-6411c392c61eeca05d3fac2ebe9f2029bd2247ae56c832d8e3397ae2f2c8e89f3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKsnz0LusjYz6e5mj1KrLVQUquclzU5oyn7UJBXrr3e1Ip5mhnlm4H0YuwRxA5ClYhQ3zQgBUOARGyDiOMlUCsdsAALzJB2r_JSdhbARAlUG2YCt5611rYvEZ513n13Ll7Ezax2iM_yOar3n0_eu3kXXr6ZvO_3dBO5aPnP1inzky602FLhuq_-nj_rDNbuGP3vXGret6ZydWF0HuvitQ_Z6P32ZzJLF08N8crtIDIKMSTYGMLJAkwGR0SKtpNUGaUWF7VMVq6oPlWtKM6MkVoqkLPoRLRpFqrByyK4Pf43vQvBky613jfb7EkT5I6nsJZUHST19daA3IXb-D8Uc0kKBlF-jsmYp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Infinite Horizon Stochastic Delay Evolution Equations in Hilbert Spaces and Stochastic Maximum Principle</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Project Euclid Open Access</source><source>Project Euclid Complete</source><creator>Li, Han ; Zhou, Jianjun ; Dai, Haoran ; Xu, Biteng ; Dong, Wenxu</creator><creatorcontrib>Li, Han ; Zhou, Jianjun ; Dai, Haoran ; Xu, Biteng ; Dong, Wenxu</creatorcontrib><description>In this paper, a class of infinite horizon optimal control problems is established, where the state equation is given by a stochastic delay evolution equation (SDEE), and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation (ABSEE). Firstly, we extend the form of Ito formula. After that, we establish the priori estimate for the solution to ABSEEs, and then the existence and uniqueness results of ABSEEs on in finite horizon are obtained. Finally, we establish necessary and sufficient conditions of stochastic maximum principle for infinite horizon optimal control problem in the form of Pontryagin’s maximum principle.</description><identifier>ISSN: 1027-5487</identifier><identifier>EISSN: 2224-6851</identifier><identifier>DOI: 10.11650/tjm/211202</identifier><language>eng</language><publisher>Mathematical Society of the Republic of China</publisher><ispartof>Taiwanese journal of mathematics, 2022-06, Vol.26 (3), p.635-665</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c213t-6411c392c61eeca05d3fac2ebe9f2029bd2247ae56c832d8e3397ae2f2c8e89f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27159813$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27159813$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,833,27926,27927,58019,58023,58252,58256</link.rule.ids></links><search><creatorcontrib>Li, Han</creatorcontrib><creatorcontrib>Zhou, Jianjun</creatorcontrib><creatorcontrib>Dai, Haoran</creatorcontrib><creatorcontrib>Xu, Biteng</creatorcontrib><creatorcontrib>Dong, Wenxu</creatorcontrib><title>Infinite Horizon Stochastic Delay Evolution Equations in Hilbert Spaces and Stochastic Maximum Principle</title><title>Taiwanese journal of mathematics</title><description>In this paper, a class of infinite horizon optimal control problems is established, where the state equation is given by a stochastic delay evolution equation (SDEE), and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation (ABSEE). Firstly, we extend the form of Ito formula. After that, we establish the priori estimate for the solution to ABSEEs, and then the existence and uniqueness results of ABSEEs on in finite horizon are obtained. Finally, we establish necessary and sufficient conditions of stochastic maximum principle for infinite horizon optimal control problem in the form of Pontryagin’s maximum principle.</description><issn>1027-5487</issn><issn>2224-6851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWKsnz0LusjYz6e5mj1KrLVQUquclzU5oyn7UJBXrr3e1Ip5mhnlm4H0YuwRxA5ClYhQ3zQgBUOARGyDiOMlUCsdsAALzJB2r_JSdhbARAlUG2YCt5611rYvEZ513n13Ll7Ezax2iM_yOar3n0_eu3kXXr6ZvO_3dBO5aPnP1inzky602FLhuq_-nj_rDNbuGP3vXGret6ZydWF0HuvitQ_Z6P32ZzJLF08N8crtIDIKMSTYGMLJAkwGR0SKtpNUGaUWF7VMVq6oPlWtKM6MkVoqkLPoRLRpFqrByyK4Pf43vQvBky613jfb7EkT5I6nsJZUHST19daA3IXb-D8Uc0kKBlF-jsmYp</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Li, Han</creator><creator>Zhou, Jianjun</creator><creator>Dai, Haoran</creator><creator>Xu, Biteng</creator><creator>Dong, Wenxu</creator><general>Mathematical Society of the Republic of China</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220601</creationdate><title>Infinite Horizon Stochastic Delay Evolution Equations in Hilbert Spaces and Stochastic Maximum Principle</title><author>Li, Han ; Zhou, Jianjun ; Dai, Haoran ; Xu, Biteng ; Dong, Wenxu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c213t-6411c392c61eeca05d3fac2ebe9f2029bd2247ae56c832d8e3397ae2f2c8e89f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Han</creatorcontrib><creatorcontrib>Zhou, Jianjun</creatorcontrib><creatorcontrib>Dai, Haoran</creatorcontrib><creatorcontrib>Xu, Biteng</creatorcontrib><creatorcontrib>Dong, Wenxu</creatorcontrib><collection>CrossRef</collection><jtitle>Taiwanese journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Han</au><au>Zhou, Jianjun</au><au>Dai, Haoran</au><au>Xu, Biteng</au><au>Dong, Wenxu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infinite Horizon Stochastic Delay Evolution Equations in Hilbert Spaces and Stochastic Maximum Principle</atitle><jtitle>Taiwanese journal of mathematics</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>26</volume><issue>3</issue><spage>635</spage><epage>665</epage><pages>635-665</pages><issn>1027-5487</issn><eissn>2224-6851</eissn><abstract>In this paper, a class of infinite horizon optimal control problems is established, where the state equation is given by a stochastic delay evolution equation (SDEE), and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation (ABSEE). Firstly, we extend the form of Ito formula. After that, we establish the priori estimate for the solution to ABSEEs, and then the existence and uniqueness results of ABSEEs on in finite horizon are obtained. Finally, we establish necessary and sufficient conditions of stochastic maximum principle for infinite horizon optimal control problem in the form of Pontryagin’s maximum principle.</abstract><pub>Mathematical Society of the Republic of China</pub><doi>10.11650/tjm/211202</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1027-5487 |
ispartof | Taiwanese journal of mathematics, 2022-06, Vol.26 (3), p.635-665 |
issn | 1027-5487 2224-6851 |
language | eng |
recordid | cdi_crossref_primary_10_11650_tjm_211202 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Project Euclid Open Access; Project Euclid Complete |
title | Infinite Horizon Stochastic Delay Evolution Equations in Hilbert Spaces and Stochastic Maximum Principle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T05%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infinite%20Horizon%20Stochastic%20Delay%20Evolution%20Equations%20in%20Hilbert%20Spaces%20and%20Stochastic%20Maximum%20Principle&rft.jtitle=Taiwanese%20journal%20of%20mathematics&rft.au=Li,%20Han&rft.date=2022-06-01&rft.volume=26&rft.issue=3&rft.spage=635&rft.epage=665&rft.pages=635-665&rft.issn=1027-5487&rft.eissn=2224-6851&rft_id=info:doi/10.11650/tjm/211202&rft_dat=%3Cjstor_cross%3E27159813%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=27159813&rfr_iscdi=true |