An Approach to the Log-Euclidean Mean via the Karcher Mean on Symmetric Cones

In a general symmetric cone, we show that certain sequence of the Karcher means converges to the Log-Euclidean mean by using the fact that the Karcher mean is the limit of inductive means. One can see this as a generalization of the Lie-Trotter formula of positive definite matrices into a symmetric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taiwanese journal of mathematics 2016-02, Vol.20 (1), p.191-203
Hauptverfasser: Kim, Sejong, Ji, Un Cig, Kum, Sangho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a general symmetric cone, we show that certain sequence of the Karcher means converges to the Log-Euclidean mean by using the fact that the Karcher mean is the limit of inductive means. One can see this as a generalization of the Lie-Trotter formula of positive definite matrices into a symmetric cone setting via the least squares mean. 2010Mathematics Subject Classification. 47A64, 17C50, 15B48, 53C20. Key words and phrases. Lie-Trotter formula, Least squares mean, Symmetric cone, Hadamard space.
ISSN:1027-5487
2224-6851
DOI:10.11650/tjm.20.2016.5559