An Approach to the Log-Euclidean Mean via the Karcher Mean on Symmetric Cones
In a general symmetric cone, we show that certain sequence of the Karcher means converges to the Log-Euclidean mean by using the fact that the Karcher mean is the limit of inductive means. One can see this as a generalization of the Lie-Trotter formula of positive definite matrices into a symmetric...
Gespeichert in:
Veröffentlicht in: | Taiwanese journal of mathematics 2016-02, Vol.20 (1), p.191-203 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a general symmetric cone, we show that certain sequence of the Karcher means converges to the Log-Euclidean mean by using the fact that the Karcher mean is the limit of inductive means. One can see this as a generalization of the Lie-Trotter formula of positive definite matrices into a symmetric cone setting via the least squares mean.
2010Mathematics Subject Classification. 47A64, 17C50, 15B48, 53C20.
Key words and phrases. Lie-Trotter formula, Least squares mean, Symmetric cone, Hadamard space. |
---|---|
ISSN: | 1027-5487 2224-6851 |
DOI: | 10.11650/tjm.20.2016.5559 |