Quasi-periodic Solutions for Nonlinear Schrodinger Equations with Legendre Potential

In this paper, the nonlinear Schrödinger equations with Legendre potential iut − uxx + VL (x)u + mu + secx · |u|²u = 0 subject to certain boundary conditions is considered, where V L ( x ) = − 1 2 − 1 4 tan 2 x , x ∈ (−π/2, π/2). It is proved that for each given positive constant m > 0, the above...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taiwanese journal of mathematics 2020-06, Vol.24 (3), p.663-679
Hauptverfasser: Shi, Guanghua, Yan, Dongfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the nonlinear Schrödinger equations with Legendre potential iut − uxx + VL (x)u + mu + secx · |u|²u = 0 subject to certain boundary conditions is considered, where V L ( x ) = − 1 2 − 1 4 tan 2 x , x ∈ (−π/2, π/2). It is proved that for each given positive constant m > 0, the above equation admits lots of quasi-periodic solutions with two frequencies. The proof is based on a partial Birkhoff normal form technique and an infinite-dimensional Kolmogorov-Arnold-Moser theory.
ISSN:1027-5487
2224-6851
DOI:10.11650/tjm/190707