Quasi-periodic Solutions for Nonlinear Schrodinger Equations with Legendre Potential
In this paper, the nonlinear Schrödinger equations with Legendre potential iut − uxx + VL (x)u + mu + secx · |u|²u = 0 subject to certain boundary conditions is considered, where V L ( x ) = − 1 2 − 1 4 tan 2 x , x ∈ (−π/2, π/2). It is proved that for each given positive constant m > 0, the above...
Gespeichert in:
Veröffentlicht in: | Taiwanese journal of mathematics 2020-06, Vol.24 (3), p.663-679 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the nonlinear Schrödinger equations with Legendre potential iut
− uxx
+ VL
(x)u + mu + secx · |u|²u = 0 subject to certain boundary conditions is considered, where
V
L
(
x
)
=
−
1
2
−
1
4
tan
2
x
, x ∈ (−π/2, π/2). It is proved that for each given positive constant m > 0, the above equation admits lots of quasi-periodic solutions with two frequencies. The proof is based on a partial Birkhoff normal form technique and an infinite-dimensional Kolmogorov-Arnold-Moser theory. |
---|---|
ISSN: | 1027-5487 2224-6851 |
DOI: | 10.11650/tjm/190707 |