On Stronger Forms of Sensitivity in Non-autonomous Systems
In this paper, some stronger forms of transitivity in a non-autonomous discrete dynamical system (X, f1,∞) generated by a sequence (fn) of continuous self maps converging uniformly to f, are studied. The concepts of thick sensitivity, ergodic sensitivity and multi-sensitivity for non-autonomous disc...
Gespeichert in:
Veröffentlicht in: | Taiwanese journal of mathematics 2018-10, Vol.22 (5), p.1139-1159 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1159 |
---|---|
container_issue | 5 |
container_start_page | 1139 |
container_title | Taiwanese journal of mathematics |
container_volume | 22 |
creator | Vasisht, Radhika Das, Ruchi |
description | In this paper, some stronger forms of transitivity in a non-autonomous discrete dynamical system (X, f1,∞) generated by a sequence (fn) of continuous self maps converging uniformly to f, are studied. The concepts of thick sensitivity, ergodic sensitivity and multi-sensitivity for non-autonomous discrete dynamical systems, which are all stronger forms of sensitivity, are defined and studied. It is proved that under certain conditions, if the rate of convergence at which (fn) converges to f is “sufficiently fast”, then various forms of sensitivity and transitivity for the non-autonomous system (X, f1,∞) and the autonomous system (X, f) coincide. Also counter examples are given to support results. |
doi_str_mv | 10.11650/tjm/180406 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_11650_tjm_180406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90025379</jstor_id><sourcerecordid>90025379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-5fac052f9652443bfe544ace5184fae95c80bcd82d4f4c0da4f898c63c5ef08a3</originalsourceid><addsrcrecordid>eNo9zzFLxDAchvEgCtbTyVnILvH-SZM0cZPDU-HwhupccmkiLbaRJCf021usOL3Lwws_hK4p3FEqBaxzP6ypAg7yBBWMMU6kEvQUFRRYRQRX1Tm6SKkHYEpSWaD7_YjrHMP44SLehjgkHDyu3Zi63H13ecLdiF_DSMwxhzEM4ZhwPaXshnSJzrz5TO7qb1foffv4tnkmu_3Ty-ZhRyzTLBPhjQXBvJaCcV4evBOcG-sEVdwbp4VVcLCtYi333EJruFdaWVla4TwoU67Q7fJrY0gpOt98xW4wcWooNL_sZmY3C3uub5a6TznE_1TPYlFWuvwBAaJVWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Stronger Forms of Sensitivity in Non-autonomous Systems</title><source>Jstor Complete Legacy</source><source>Project Euclid Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics & Statistics</source><creator>Vasisht, Radhika ; Das, Ruchi</creator><creatorcontrib>Vasisht, Radhika ; Das, Ruchi</creatorcontrib><description>In this paper, some stronger forms of transitivity in a non-autonomous discrete dynamical system (X, f1,∞) generated by a sequence (fn) of continuous self maps converging uniformly to f, are studied. The concepts of thick sensitivity, ergodic sensitivity and multi-sensitivity for non-autonomous discrete dynamical systems, which are all stronger forms of sensitivity, are defined and studied. It is proved that under certain conditions, if the rate of convergence at which (fn) converges to f is “sufficiently fast”, then various forms of sensitivity and transitivity for the non-autonomous system (X, f1,∞) and the autonomous system (X, f) coincide. Also counter examples are given to support results.</description><identifier>ISSN: 1027-5487</identifier><identifier>EISSN: 2224-6851</identifier><identifier>DOI: 10.11650/tjm/180406</identifier><language>eng</language><publisher>Mathematical Society of the Republic of China</publisher><ispartof>Taiwanese journal of mathematics, 2018-10, Vol.22 (5), p.1139-1159</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-5fac052f9652443bfe544ace5184fae95c80bcd82d4f4c0da4f898c63c5ef08a3</citedby><cites>FETCH-LOGICAL-c292t-5fac052f9652443bfe544ace5184fae95c80bcd82d4f4c0da4f898c63c5ef08a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/90025379$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/90025379$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Vasisht, Radhika</creatorcontrib><creatorcontrib>Das, Ruchi</creatorcontrib><title>On Stronger Forms of Sensitivity in Non-autonomous Systems</title><title>Taiwanese journal of mathematics</title><description>In this paper, some stronger forms of transitivity in a non-autonomous discrete dynamical system (X, f1,∞) generated by a sequence (fn) of continuous self maps converging uniformly to f, are studied. The concepts of thick sensitivity, ergodic sensitivity and multi-sensitivity for non-autonomous discrete dynamical systems, which are all stronger forms of sensitivity, are defined and studied. It is proved that under certain conditions, if the rate of convergence at which (fn) converges to f is “sufficiently fast”, then various forms of sensitivity and transitivity for the non-autonomous system (X, f1,∞) and the autonomous system (X, f) coincide. Also counter examples are given to support results.</description><issn>1027-5487</issn><issn>2224-6851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9zzFLxDAchvEgCtbTyVnILvH-SZM0cZPDU-HwhupccmkiLbaRJCf021usOL3Lwws_hK4p3FEqBaxzP6ypAg7yBBWMMU6kEvQUFRRYRQRX1Tm6SKkHYEpSWaD7_YjrHMP44SLehjgkHDyu3Zi63H13ecLdiF_DSMwxhzEM4ZhwPaXshnSJzrz5TO7qb1foffv4tnkmu_3Ty-ZhRyzTLBPhjQXBvJaCcV4evBOcG-sEVdwbp4VVcLCtYi333EJruFdaWVla4TwoU67Q7fJrY0gpOt98xW4wcWooNL_sZmY3C3uub5a6TznE_1TPYlFWuvwBAaJVWQ</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Vasisht, Radhika</creator><creator>Das, Ruchi</creator><general>Mathematical Society of the Republic of China</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181001</creationdate><title>On Stronger Forms of Sensitivity in Non-autonomous Systems</title><author>Vasisht, Radhika ; Das, Ruchi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-5fac052f9652443bfe544ace5184fae95c80bcd82d4f4c0da4f898c63c5ef08a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasisht, Radhika</creatorcontrib><creatorcontrib>Das, Ruchi</creatorcontrib><collection>CrossRef</collection><jtitle>Taiwanese journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasisht, Radhika</au><au>Das, Ruchi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Stronger Forms of Sensitivity in Non-autonomous Systems</atitle><jtitle>Taiwanese journal of mathematics</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>22</volume><issue>5</issue><spage>1139</spage><epage>1159</epage><pages>1139-1159</pages><issn>1027-5487</issn><eissn>2224-6851</eissn><abstract>In this paper, some stronger forms of transitivity in a non-autonomous discrete dynamical system (X, f1,∞) generated by a sequence (fn) of continuous self maps converging uniformly to f, are studied. The concepts of thick sensitivity, ergodic sensitivity and multi-sensitivity for non-autonomous discrete dynamical systems, which are all stronger forms of sensitivity, are defined and studied. It is proved that under certain conditions, if the rate of convergence at which (fn) converges to f is “sufficiently fast”, then various forms of sensitivity and transitivity for the non-autonomous system (X, f1,∞) and the autonomous system (X, f) coincide. Also counter examples are given to support results.</abstract><pub>Mathematical Society of the Republic of China</pub><doi>10.11650/tjm/180406</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1027-5487 |
ispartof | Taiwanese journal of mathematics, 2018-10, Vol.22 (5), p.1139-1159 |
issn | 1027-5487 2224-6851 |
language | eng |
recordid | cdi_crossref_primary_10_11650_tjm_180406 |
source | Jstor Complete Legacy; Project Euclid Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete; JSTOR Mathematics & Statistics |
title | On Stronger Forms of Sensitivity in Non-autonomous Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Stronger%20Forms%20of%20Sensitivity%20in%20Non-autonomous%20Systems&rft.jtitle=Taiwanese%20journal%20of%20mathematics&rft.au=Vasisht,%20Radhika&rft.date=2018-10-01&rft.volume=22&rft.issue=5&rft.spage=1139&rft.epage=1159&rft.pages=1139-1159&rft.issn=1027-5487&rft.eissn=2224-6851&rft_id=info:doi/10.11650/tjm/180406&rft_dat=%3Cjstor_cross%3E90025379%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90025379&rfr_iscdi=true |