On Stronger Forms of Sensitivity in Non-autonomous Systems

In this paper, some stronger forms of transitivity in a non-autonomous discrete dynamical system (X, f1,∞) generated by a sequence (fn) of continuous self maps converging uniformly to f, are studied. The concepts of thick sensitivity, ergodic sensitivity and multi-sensitivity for non-autonomous disc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taiwanese journal of mathematics 2018-10, Vol.22 (5), p.1139-1159
Hauptverfasser: Vasisht, Radhika, Das, Ruchi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1159
container_issue 5
container_start_page 1139
container_title Taiwanese journal of mathematics
container_volume 22
creator Vasisht, Radhika
Das, Ruchi
description In this paper, some stronger forms of transitivity in a non-autonomous discrete dynamical system (X, f1,∞) generated by a sequence (fn) of continuous self maps converging uniformly to f, are studied. The concepts of thick sensitivity, ergodic sensitivity and multi-sensitivity for non-autonomous discrete dynamical systems, which are all stronger forms of sensitivity, are defined and studied. It is proved that under certain conditions, if the rate of convergence at which (fn) converges to f is “sufficiently fast”, then various forms of sensitivity and transitivity for the non-autonomous system (X, f1,∞) and the autonomous system (X, f) coincide. Also counter examples are given to support results.
doi_str_mv 10.11650/tjm/180406
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_11650_tjm_180406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90025379</jstor_id><sourcerecordid>90025379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-5fac052f9652443bfe544ace5184fae95c80bcd82d4f4c0da4f898c63c5ef08a3</originalsourceid><addsrcrecordid>eNo9zzFLxDAchvEgCtbTyVnILvH-SZM0cZPDU-HwhupccmkiLbaRJCf021usOL3Lwws_hK4p3FEqBaxzP6ypAg7yBBWMMU6kEvQUFRRYRQRX1Tm6SKkHYEpSWaD7_YjrHMP44SLehjgkHDyu3Zi63H13ecLdiF_DSMwxhzEM4ZhwPaXshnSJzrz5TO7qb1foffv4tnkmu_3Ty-ZhRyzTLBPhjQXBvJaCcV4evBOcG-sEVdwbp4VVcLCtYi333EJruFdaWVla4TwoU67Q7fJrY0gpOt98xW4wcWooNL_sZmY3C3uub5a6TznE_1TPYlFWuvwBAaJVWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Stronger Forms of Sensitivity in Non-autonomous Systems</title><source>Jstor Complete Legacy</source><source>Project Euclid Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Vasisht, Radhika ; Das, Ruchi</creator><creatorcontrib>Vasisht, Radhika ; Das, Ruchi</creatorcontrib><description>In this paper, some stronger forms of transitivity in a non-autonomous discrete dynamical system (X, f1,∞) generated by a sequence (fn) of continuous self maps converging uniformly to f, are studied. The concepts of thick sensitivity, ergodic sensitivity and multi-sensitivity for non-autonomous discrete dynamical systems, which are all stronger forms of sensitivity, are defined and studied. It is proved that under certain conditions, if the rate of convergence at which (fn) converges to f is “sufficiently fast”, then various forms of sensitivity and transitivity for the non-autonomous system (X, f1,∞) and the autonomous system (X, f) coincide. Also counter examples are given to support results.</description><identifier>ISSN: 1027-5487</identifier><identifier>EISSN: 2224-6851</identifier><identifier>DOI: 10.11650/tjm/180406</identifier><language>eng</language><publisher>Mathematical Society of the Republic of China</publisher><ispartof>Taiwanese journal of mathematics, 2018-10, Vol.22 (5), p.1139-1159</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-5fac052f9652443bfe544ace5184fae95c80bcd82d4f4c0da4f898c63c5ef08a3</citedby><cites>FETCH-LOGICAL-c292t-5fac052f9652443bfe544ace5184fae95c80bcd82d4f4c0da4f898c63c5ef08a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/90025379$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/90025379$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Vasisht, Radhika</creatorcontrib><creatorcontrib>Das, Ruchi</creatorcontrib><title>On Stronger Forms of Sensitivity in Non-autonomous Systems</title><title>Taiwanese journal of mathematics</title><description>In this paper, some stronger forms of transitivity in a non-autonomous discrete dynamical system (X, f1,∞) generated by a sequence (fn) of continuous self maps converging uniformly to f, are studied. The concepts of thick sensitivity, ergodic sensitivity and multi-sensitivity for non-autonomous discrete dynamical systems, which are all stronger forms of sensitivity, are defined and studied. It is proved that under certain conditions, if the rate of convergence at which (fn) converges to f is “sufficiently fast”, then various forms of sensitivity and transitivity for the non-autonomous system (X, f1,∞) and the autonomous system (X, f) coincide. Also counter examples are given to support results.</description><issn>1027-5487</issn><issn>2224-6851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9zzFLxDAchvEgCtbTyVnILvH-SZM0cZPDU-HwhupccmkiLbaRJCf021usOL3Lwws_hK4p3FEqBaxzP6ypAg7yBBWMMU6kEvQUFRRYRQRX1Tm6SKkHYEpSWaD7_YjrHMP44SLehjgkHDyu3Zi63H13ecLdiF_DSMwxhzEM4ZhwPaXshnSJzrz5TO7qb1foffv4tnkmu_3Ty-ZhRyzTLBPhjQXBvJaCcV4evBOcG-sEVdwbp4VVcLCtYi333EJruFdaWVla4TwoU67Q7fJrY0gpOt98xW4wcWooNL_sZmY3C3uub5a6TznE_1TPYlFWuvwBAaJVWQ</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Vasisht, Radhika</creator><creator>Das, Ruchi</creator><general>Mathematical Society of the Republic of China</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181001</creationdate><title>On Stronger Forms of Sensitivity in Non-autonomous Systems</title><author>Vasisht, Radhika ; Das, Ruchi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-5fac052f9652443bfe544ace5184fae95c80bcd82d4f4c0da4f898c63c5ef08a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasisht, Radhika</creatorcontrib><creatorcontrib>Das, Ruchi</creatorcontrib><collection>CrossRef</collection><jtitle>Taiwanese journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasisht, Radhika</au><au>Das, Ruchi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Stronger Forms of Sensitivity in Non-autonomous Systems</atitle><jtitle>Taiwanese journal of mathematics</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>22</volume><issue>5</issue><spage>1139</spage><epage>1159</epage><pages>1139-1159</pages><issn>1027-5487</issn><eissn>2224-6851</eissn><abstract>In this paper, some stronger forms of transitivity in a non-autonomous discrete dynamical system (X, f1,∞) generated by a sequence (fn) of continuous self maps converging uniformly to f, are studied. The concepts of thick sensitivity, ergodic sensitivity and multi-sensitivity for non-autonomous discrete dynamical systems, which are all stronger forms of sensitivity, are defined and studied. It is proved that under certain conditions, if the rate of convergence at which (fn) converges to f is “sufficiently fast”, then various forms of sensitivity and transitivity for the non-autonomous system (X, f1,∞) and the autonomous system (X, f) coincide. Also counter examples are given to support results.</abstract><pub>Mathematical Society of the Republic of China</pub><doi>10.11650/tjm/180406</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1027-5487
ispartof Taiwanese journal of mathematics, 2018-10, Vol.22 (5), p.1139-1159
issn 1027-5487
2224-6851
language eng
recordid cdi_crossref_primary_10_11650_tjm_180406
source Jstor Complete Legacy; Project Euclid Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete; JSTOR Mathematics & Statistics
title On Stronger Forms of Sensitivity in Non-autonomous Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Stronger%20Forms%20of%20Sensitivity%20in%20Non-autonomous%20Systems&rft.jtitle=Taiwanese%20journal%20of%20mathematics&rft.au=Vasisht,%20Radhika&rft.date=2018-10-01&rft.volume=22&rft.issue=5&rft.spage=1139&rft.epage=1159&rft.pages=1139-1159&rft.issn=1027-5487&rft.eissn=2224-6851&rft_id=info:doi/10.11650/tjm/180406&rft_dat=%3Cjstor_cross%3E90025379%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90025379&rfr_iscdi=true