Optimized Regression Discontinuity Designs
The increasing popularity of regression discontinuity methods for causal inference in observational studies has led to a proliferation of different estimating strategies, most of which involve first fitting nonparametric regression models on both sides of a treatment assignment boundary and then rep...
Gespeichert in:
Veröffentlicht in: | The review of economics and statistics 2019-05, Vol.101 (2), p.264-278 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 278 |
---|---|
container_issue | 2 |
container_start_page | 264 |
container_title | The review of economics and statistics |
container_volume | 101 |
creator | Imbens, Guido Wager, Stefan |
description | The increasing popularity of regression discontinuity methods for causal inference in observational studies has led to a proliferation of different estimating strategies, most of which involve first fitting nonparametric regression models on both sides of a treatment assignment boundary and then reporting plug-in estimates for the effect of interest. In applications, however, it is often difficult to tune the nonparametric regressions in a way that is well calibrated for the specific target of inference; for example, the model with the best global in-sample fit may provide poor estimates of the discontinuity parameter, which depends on the regression function at boundary points. We propose an alternative method for estimation and statistical inference in regression discontinuity designs that uses numerical convex optimization to directly obtain the finite-sample-minimax linear estimator for the regression discontinuity parameter, subject to bounds on the second derivative of
the conditional response function. Given a bound on the second derivative, our proposed method is fully data driven and provides uniform confidence intervals for the regression discontinuity parameter with both discrete and continuous running variables. The method also naturally extends to the case of multiple running variables. |
doi_str_mv | 10.1162/rest_a_00793 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1162_rest_a_00793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2233964065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-f1dc61c3a3364b279b0f79f7930e2abf31b20f7ad0bdd92da6ecfd5783edec0e3</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMoWKs3f0DBi4jVSaZN7VF2_YKFBdFzSPOxZLEfJu1h_fVmqYc9CAMDw8MzvC8hlxTuKOXs3pswCikAqhqPSEJLhLymBTsmCQAWOS-xPCVnIWwBgFYUE3KzHkbXuh-js3eziYLg-i5buqD6bnTd5MZdtjTBbbpwTk6s_Arm4m-n5PP56WPxmq_WL2-Lx1WukFdjbqlWnCqUiLxoWFU3YKs6DoJhsrFIGxYvUkOjdc205EZZXVYPaLRRYDAlV7N38P33tI-07SffxZeCMcSaFxCDpOR2ppTvQ_DGisG7VvqdoCD2bYjDNiJ-PeOtO_D9i_4C_bthYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233964065</pqid></control><display><type>article</type><title>Optimized Regression Discontinuity Designs</title><source>EBSCOhost Business Source Complete</source><source>MIT Press Journals</source><creator>Imbens, Guido ; Wager, Stefan</creator><creatorcontrib>Imbens, Guido ; Wager, Stefan</creatorcontrib><description>The increasing popularity of regression discontinuity methods for causal inference in observational studies has led to a proliferation of different estimating strategies, most of which involve first fitting nonparametric regression models on both sides of a treatment assignment boundary and then reporting plug-in estimates for the effect of interest. In applications, however, it is often difficult to tune the nonparametric regressions in a way that is well calibrated for the specific target of inference; for example, the model with the best global in-sample fit may provide poor estimates of the discontinuity parameter, which depends on the regression function at boundary points. We propose an alternative method for estimation and statistical inference in regression discontinuity designs that uses numerical convex optimization to directly obtain the finite-sample-minimax linear estimator for the regression discontinuity parameter, subject to bounds on the second derivative of
the conditional response function. Given a bound on the second derivative, our proposed method is fully data driven and provides uniform confidence intervals for the regression discontinuity parameter with both discrete and continuous running variables. The method also naturally extends to the case of multiple running variables.</description><identifier>ISSN: 0034-6535</identifier><identifier>EISSN: 1530-9142</identifier><identifier>DOI: 10.1162/rest_a_00793</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Discontinuity ; Economic models ; Observational studies ; Optimization ; Popularity ; Regression analysis ; Statistical inference</subject><ispartof>The review of economics and statistics, 2019-05, Vol.101 (2), p.264-278</ispartof><rights>Copyright MIT Press Journals, The May 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-f1dc61c3a3364b279b0f79f7930e2abf31b20f7ad0bdd92da6ecfd5783edec0e3</citedby><cites>FETCH-LOGICAL-c367t-f1dc61c3a3364b279b0f79f7930e2abf31b20f7ad0bdd92da6ecfd5783edec0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/rest/article/doi/10.1162/rest_a_00793$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,54011,54012</link.rule.ids></links><search><creatorcontrib>Imbens, Guido</creatorcontrib><creatorcontrib>Wager, Stefan</creatorcontrib><title>Optimized Regression Discontinuity Designs</title><title>The review of economics and statistics</title><description>The increasing popularity of regression discontinuity methods for causal inference in observational studies has led to a proliferation of different estimating strategies, most of which involve first fitting nonparametric regression models on both sides of a treatment assignment boundary and then reporting plug-in estimates for the effect of interest. In applications, however, it is often difficult to tune the nonparametric regressions in a way that is well calibrated for the specific target of inference; for example, the model with the best global in-sample fit may provide poor estimates of the discontinuity parameter, which depends on the regression function at boundary points. We propose an alternative method for estimation and statistical inference in regression discontinuity designs that uses numerical convex optimization to directly obtain the finite-sample-minimax linear estimator for the regression discontinuity parameter, subject to bounds on the second derivative of
the conditional response function. Given a bound on the second derivative, our proposed method is fully data driven and provides uniform confidence intervals for the regression discontinuity parameter with both discrete and continuous running variables. The method also naturally extends to the case of multiple running variables.</description><subject>Discontinuity</subject><subject>Economic models</subject><subject>Observational studies</subject><subject>Optimization</subject><subject>Popularity</subject><subject>Regression analysis</subject><subject>Statistical inference</subject><issn>0034-6535</issn><issn>1530-9142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkE1LxDAQhoMoWKs3f0DBi4jVSaZN7VF2_YKFBdFzSPOxZLEfJu1h_fVmqYc9CAMDw8MzvC8hlxTuKOXs3pswCikAqhqPSEJLhLymBTsmCQAWOS-xPCVnIWwBgFYUE3KzHkbXuh-js3eziYLg-i5buqD6bnTd5MZdtjTBbbpwTk6s_Arm4m-n5PP56WPxmq_WL2-Lx1WukFdjbqlWnCqUiLxoWFU3YKs6DoJhsrFIGxYvUkOjdc205EZZXVYPaLRRYDAlV7N38P33tI-07SffxZeCMcSaFxCDpOR2ppTvQ_DGisG7VvqdoCD2bYjDNiJ-PeOtO_D9i_4C_bthYw</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Imbens, Guido</creator><creator>Wager, Stefan</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20190501</creationdate><title>Optimized Regression Discontinuity Designs</title><author>Imbens, Guido ; Wager, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-f1dc61c3a3364b279b0f79f7930e2abf31b20f7ad0bdd92da6ecfd5783edec0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Discontinuity</topic><topic>Economic models</topic><topic>Observational studies</topic><topic>Optimization</topic><topic>Popularity</topic><topic>Regression analysis</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imbens, Guido</creatorcontrib><creatorcontrib>Wager, Stefan</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The review of economics and statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imbens, Guido</au><au>Wager, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized Regression Discontinuity Designs</atitle><jtitle>The review of economics and statistics</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>101</volume><issue>2</issue><spage>264</spage><epage>278</epage><pages>264-278</pages><issn>0034-6535</issn><eissn>1530-9142</eissn><abstract>The increasing popularity of regression discontinuity methods for causal inference in observational studies has led to a proliferation of different estimating strategies, most of which involve first fitting nonparametric regression models on both sides of a treatment assignment boundary and then reporting plug-in estimates for the effect of interest. In applications, however, it is often difficult to tune the nonparametric regressions in a way that is well calibrated for the specific target of inference; for example, the model with the best global in-sample fit may provide poor estimates of the discontinuity parameter, which depends on the regression function at boundary points. We propose an alternative method for estimation and statistical inference in regression discontinuity designs that uses numerical convex optimization to directly obtain the finite-sample-minimax linear estimator for the regression discontinuity parameter, subject to bounds on the second derivative of
the conditional response function. Given a bound on the second derivative, our proposed method is fully data driven and provides uniform confidence intervals for the regression discontinuity parameter with both discrete and continuous running variables. The method also naturally extends to the case of multiple running variables.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><doi>10.1162/rest_a_00793</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6535 |
ispartof | The review of economics and statistics, 2019-05, Vol.101 (2), p.264-278 |
issn | 0034-6535 1530-9142 |
language | eng |
recordid | cdi_crossref_primary_10_1162_rest_a_00793 |
source | EBSCOhost Business Source Complete; MIT Press Journals |
subjects | Discontinuity Economic models Observational studies Optimization Popularity Regression analysis Statistical inference |
title | Optimized Regression Discontinuity Designs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20Regression%20Discontinuity%20Designs&rft.jtitle=The%20review%20of%20economics%20and%20statistics&rft.au=Imbens,%20Guido&rft.date=2019-05-01&rft.volume=101&rft.issue=2&rft.spage=264&rft.epage=278&rft.pages=264-278&rft.issn=0034-6535&rft.eissn=1530-9142&rft_id=info:doi/10.1162/rest_a_00793&rft_dat=%3Cproquest_cross%3E2233964065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2233964065&rft_id=info:pmid/&rfr_iscdi=true |