Optimized Regression Discontinuity Designs

The increasing popularity of regression discontinuity methods for causal inference in observational studies has led to a proliferation of different estimating strategies, most of which involve first fitting nonparametric regression models on both sides of a treatment assignment boundary and then rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The review of economics and statistics 2019-05, Vol.101 (2), p.264-278
Hauptverfasser: Imbens, Guido, Wager, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 278
container_issue 2
container_start_page 264
container_title The review of economics and statistics
container_volume 101
creator Imbens, Guido
Wager, Stefan
description The increasing popularity of regression discontinuity methods for causal inference in observational studies has led to a proliferation of different estimating strategies, most of which involve first fitting nonparametric regression models on both sides of a treatment assignment boundary and then reporting plug-in estimates for the effect of interest. In applications, however, it is often difficult to tune the nonparametric regressions in a way that is well calibrated for the specific target of inference; for example, the model with the best global in-sample fit may provide poor estimates of the discontinuity parameter, which depends on the regression function at boundary points. We propose an alternative method for estimation and statistical inference in regression discontinuity designs that uses numerical convex optimization to directly obtain the finite-sample-minimax linear estimator for the regression discontinuity parameter, subject to bounds on the second derivative of the conditional response function. Given a bound on the second derivative, our proposed method is fully data driven and provides uniform confidence intervals for the regression discontinuity parameter with both discrete and continuous running variables. The method also naturally extends to the case of multiple running variables.
doi_str_mv 10.1162/rest_a_00793
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1162_rest_a_00793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2233964065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-f1dc61c3a3364b279b0f79f7930e2abf31b20f7ad0bdd92da6ecfd5783edec0e3</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMoWKs3f0DBi4jVSaZN7VF2_YKFBdFzSPOxZLEfJu1h_fVmqYc9CAMDw8MzvC8hlxTuKOXs3pswCikAqhqPSEJLhLymBTsmCQAWOS-xPCVnIWwBgFYUE3KzHkbXuh-js3eziYLg-i5buqD6bnTd5MZdtjTBbbpwTk6s_Arm4m-n5PP56WPxmq_WL2-Lx1WukFdjbqlWnCqUiLxoWFU3YKs6DoJhsrFIGxYvUkOjdc205EZZXVYPaLRRYDAlV7N38P33tI-07SffxZeCMcSaFxCDpOR2ppTvQ_DGisG7VvqdoCD2bYjDNiJ-PeOtO_D9i_4C_bthYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233964065</pqid></control><display><type>article</type><title>Optimized Regression Discontinuity Designs</title><source>EBSCOhost Business Source Complete</source><source>MIT Press Journals</source><creator>Imbens, Guido ; Wager, Stefan</creator><creatorcontrib>Imbens, Guido ; Wager, Stefan</creatorcontrib><description>The increasing popularity of regression discontinuity methods for causal inference in observational studies has led to a proliferation of different estimating strategies, most of which involve first fitting nonparametric regression models on both sides of a treatment assignment boundary and then reporting plug-in estimates for the effect of interest. In applications, however, it is often difficult to tune the nonparametric regressions in a way that is well calibrated for the specific target of inference; for example, the model with the best global in-sample fit may provide poor estimates of the discontinuity parameter, which depends on the regression function at boundary points. We propose an alternative method for estimation and statistical inference in regression discontinuity designs that uses numerical convex optimization to directly obtain the finite-sample-minimax linear estimator for the regression discontinuity parameter, subject to bounds on the second derivative of the conditional response function. Given a bound on the second derivative, our proposed method is fully data driven and provides uniform confidence intervals for the regression discontinuity parameter with both discrete and continuous running variables. The method also naturally extends to the case of multiple running variables.</description><identifier>ISSN: 0034-6535</identifier><identifier>EISSN: 1530-9142</identifier><identifier>DOI: 10.1162/rest_a_00793</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Discontinuity ; Economic models ; Observational studies ; Optimization ; Popularity ; Regression analysis ; Statistical inference</subject><ispartof>The review of economics and statistics, 2019-05, Vol.101 (2), p.264-278</ispartof><rights>Copyright MIT Press Journals, The May 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-f1dc61c3a3364b279b0f79f7930e2abf31b20f7ad0bdd92da6ecfd5783edec0e3</citedby><cites>FETCH-LOGICAL-c367t-f1dc61c3a3364b279b0f79f7930e2abf31b20f7ad0bdd92da6ecfd5783edec0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/rest/article/doi/10.1162/rest_a_00793$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,54011,54012</link.rule.ids></links><search><creatorcontrib>Imbens, Guido</creatorcontrib><creatorcontrib>Wager, Stefan</creatorcontrib><title>Optimized Regression Discontinuity Designs</title><title>The review of economics and statistics</title><description>The increasing popularity of regression discontinuity methods for causal inference in observational studies has led to a proliferation of different estimating strategies, most of which involve first fitting nonparametric regression models on both sides of a treatment assignment boundary and then reporting plug-in estimates for the effect of interest. In applications, however, it is often difficult to tune the nonparametric regressions in a way that is well calibrated for the specific target of inference; for example, the model with the best global in-sample fit may provide poor estimates of the discontinuity parameter, which depends on the regression function at boundary points. We propose an alternative method for estimation and statistical inference in regression discontinuity designs that uses numerical convex optimization to directly obtain the finite-sample-minimax linear estimator for the regression discontinuity parameter, subject to bounds on the second derivative of the conditional response function. Given a bound on the second derivative, our proposed method is fully data driven and provides uniform confidence intervals for the regression discontinuity parameter with both discrete and continuous running variables. The method also naturally extends to the case of multiple running variables.</description><subject>Discontinuity</subject><subject>Economic models</subject><subject>Observational studies</subject><subject>Optimization</subject><subject>Popularity</subject><subject>Regression analysis</subject><subject>Statistical inference</subject><issn>0034-6535</issn><issn>1530-9142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkE1LxDAQhoMoWKs3f0DBi4jVSaZN7VF2_YKFBdFzSPOxZLEfJu1h_fVmqYc9CAMDw8MzvC8hlxTuKOXs3pswCikAqhqPSEJLhLymBTsmCQAWOS-xPCVnIWwBgFYUE3KzHkbXuh-js3eziYLg-i5buqD6bnTd5MZdtjTBbbpwTk6s_Arm4m-n5PP56WPxmq_WL2-Lx1WukFdjbqlWnCqUiLxoWFU3YKs6DoJhsrFIGxYvUkOjdc205EZZXVYPaLRRYDAlV7N38P33tI-07SffxZeCMcSaFxCDpOR2ppTvQ_DGisG7VvqdoCD2bYjDNiJ-PeOtO_D9i_4C_bthYw</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Imbens, Guido</creator><creator>Wager, Stefan</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20190501</creationdate><title>Optimized Regression Discontinuity Designs</title><author>Imbens, Guido ; Wager, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-f1dc61c3a3364b279b0f79f7930e2abf31b20f7ad0bdd92da6ecfd5783edec0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Discontinuity</topic><topic>Economic models</topic><topic>Observational studies</topic><topic>Optimization</topic><topic>Popularity</topic><topic>Regression analysis</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imbens, Guido</creatorcontrib><creatorcontrib>Wager, Stefan</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The review of economics and statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imbens, Guido</au><au>Wager, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized Regression Discontinuity Designs</atitle><jtitle>The review of economics and statistics</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>101</volume><issue>2</issue><spage>264</spage><epage>278</epage><pages>264-278</pages><issn>0034-6535</issn><eissn>1530-9142</eissn><abstract>The increasing popularity of regression discontinuity methods for causal inference in observational studies has led to a proliferation of different estimating strategies, most of which involve first fitting nonparametric regression models on both sides of a treatment assignment boundary and then reporting plug-in estimates for the effect of interest. In applications, however, it is often difficult to tune the nonparametric regressions in a way that is well calibrated for the specific target of inference; for example, the model with the best global in-sample fit may provide poor estimates of the discontinuity parameter, which depends on the regression function at boundary points. We propose an alternative method for estimation and statistical inference in regression discontinuity designs that uses numerical convex optimization to directly obtain the finite-sample-minimax linear estimator for the regression discontinuity parameter, subject to bounds on the second derivative of the conditional response function. Given a bound on the second derivative, our proposed method is fully data driven and provides uniform confidence intervals for the regression discontinuity parameter with both discrete and continuous running variables. The method also naturally extends to the case of multiple running variables.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><doi>10.1162/rest_a_00793</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6535
ispartof The review of economics and statistics, 2019-05, Vol.101 (2), p.264-278
issn 0034-6535
1530-9142
language eng
recordid cdi_crossref_primary_10_1162_rest_a_00793
source EBSCOhost Business Source Complete; MIT Press Journals
subjects Discontinuity
Economic models
Observational studies
Optimization
Popularity
Regression analysis
Statistical inference
title Optimized Regression Discontinuity Designs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20Regression%20Discontinuity%20Designs&rft.jtitle=The%20review%20of%20economics%20and%20statistics&rft.au=Imbens,%20Guido&rft.date=2019-05-01&rft.volume=101&rft.issue=2&rft.spage=264&rft.epage=278&rft.pages=264-278&rft.issn=0034-6535&rft.eissn=1530-9142&rft_id=info:doi/10.1162/rest_a_00793&rft_dat=%3Cproquest_cross%3E2233964065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2233964065&rft_id=info:pmid/&rfr_iscdi=true