Optimal Decoding of Dynamic Stimuli by Heterogeneous Populations of Spiking Neurons: A Closed-Form Approximation

Neural decoding may be formulated as dynamic state estimation (filtering) based on point-process observations, a generally intractable problem. Numerical sampling techniques are often practically useful for the decoding of real neural data. However, they are less useful as theoretical tools for mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 2018-08, Vol.30 (8), p.2056-2112
Hauptverfasser: Harel, Yuval, Meir, Ron, Opper, Manfred
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2112
container_issue 8
container_start_page 2056
container_title Neural computation
container_volume 30
creator Harel, Yuval
Meir, Ron
Opper, Manfred
description Neural decoding may be formulated as dynamic state estimation (filtering) based on point-process observations, a generally intractable problem. Numerical sampling techniques are often practically useful for the decoding of real neural data. However, they are less useful as theoretical tools for modeling and understanding sensory neural systems, since they lead to limited conceptual insight into optimal encoding and decoding strategies. We consider sensory neural populations characterized by a distribution over neuron parameters. We develop an analytically tractable Bayesian approximation to optimal filtering based on the observation of spiking activity that greatly facilitates the analysis of optimal encoding in situations deviating from common assumptions of uniform coding. Continuous distributions are used to approximate large populations with few parameters, resulting in a filter whose complexity does not grow with population size and allowing optimization of population parameters rather than individual tuning functions. Numerical comparison with particle filtering demonstrates the quality of the approximation. The analytic framework leads to insights that are difficult to obtain from numerical algorithms and is consistent with biological observations about the distribution of sensory cells' preferred stimuli.
doi_str_mv 10.1162/neco_a_01105
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1162_neco_a_01105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2325095730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-8c8f5c7535d3031a9e587980c17e2fd024729b8ce6dfffa2e60fcc3b3aa68b0a3</originalsourceid><addsrcrecordid>eNptkc1LxDAQxYMouq7ePEvAiwer-di0ibdl13UFUWEVvIU0TaTaNjVpwf3vzer6gXgKTH7z3psZAA4wOsU4JWeN0U4qiTBGbAMMMKMo4Zw_boIB4kIkWZpmO2A3hGeEUBqhbbBDhBiJUUoHoL1tu7JWFZxGmaJsnqCzcLpsVF1quIhffVXCfAnnpjPePZnGuD7AO9f2lepK14QVv2jLl1Xrjel9LJ3DMZxULpgimTlfw3HbevcWXVYNe2DLqiqY_fU7BA-zi_vJPLm-vbyajK8TTRnpEq65ZTpjlBUUUayEYTwTHGmcGWILREYZETnXJi2stYqYFFmtaU6VSnmOFB2C40_d6P3am9DJugzaVJX6GEGSuItR3AYlET36gz673jcxnSSUMCRYFjMMwcknpb0LwRsrWx9n8kuJkVxdQv6-RMQP16J9XpviG_5a_U_Auvxl-K_WOyJdkxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2325095730</pqid></control><display><type>article</type><title>Optimal Decoding of Dynamic Stimuli by Heterogeneous Populations of Spiking Neurons: A Closed-Form Approximation</title><source>MIT Press Journals</source><creator>Harel, Yuval ; Meir, Ron ; Opper, Manfred</creator><creatorcontrib>Harel, Yuval ; Meir, Ron ; Opper, Manfred</creatorcontrib><description>Neural decoding may be formulated as dynamic state estimation (filtering) based on point-process observations, a generally intractable problem. Numerical sampling techniques are often practically useful for the decoding of real neural data. However, they are less useful as theoretical tools for modeling and understanding sensory neural systems, since they lead to limited conceptual insight into optimal encoding and decoding strategies. We consider sensory neural populations characterized by a distribution over neuron parameters. We develop an analytically tractable Bayesian approximation to optimal filtering based on the observation of spiking activity that greatly facilitates the analysis of optimal encoding in situations deviating from common assumptions of uniform coding. Continuous distributions are used to approximate large populations with few parameters, resulting in a filter whose complexity does not grow with population size and allowing optimization of population parameters rather than individual tuning functions. Numerical comparison with particle filtering demonstrates the quality of the approximation. The analytic framework leads to insights that are difficult to obtain from numerical algorithms and is consistent with biological observations about the distribution of sensory cells' preferred stimuli.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/neco_a_01105</identifier><identifier>PMID: 29949463</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Algorithms ; Approximation ; Decoding ; Filtration ; Letters ; Optimization ; Parameters ; Populations ; Spiking ; State estimation ; Stimuli</subject><ispartof>Neural computation, 2018-08, Vol.30 (8), p.2056-2112</ispartof><rights>Copyright MIT Press Journals, The Aug 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-8c8f5c7535d3031a9e587980c17e2fd024729b8ce6dfffa2e60fcc3b3aa68b0a3</citedby><cites>FETCH-LOGICAL-c352t-8c8f5c7535d3031a9e587980c17e2fd024729b8ce6dfffa2e60fcc3b3aa68b0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/neco_a_01105$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,53984,53985</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29949463$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harel, Yuval</creatorcontrib><creatorcontrib>Meir, Ron</creatorcontrib><creatorcontrib>Opper, Manfred</creatorcontrib><title>Optimal Decoding of Dynamic Stimuli by Heterogeneous Populations of Spiking Neurons: A Closed-Form Approximation</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>Neural decoding may be formulated as dynamic state estimation (filtering) based on point-process observations, a generally intractable problem. Numerical sampling techniques are often practically useful for the decoding of real neural data. However, they are less useful as theoretical tools for modeling and understanding sensory neural systems, since they lead to limited conceptual insight into optimal encoding and decoding strategies. We consider sensory neural populations characterized by a distribution over neuron parameters. We develop an analytically tractable Bayesian approximation to optimal filtering based on the observation of spiking activity that greatly facilitates the analysis of optimal encoding in situations deviating from common assumptions of uniform coding. Continuous distributions are used to approximate large populations with few parameters, resulting in a filter whose complexity does not grow with population size and allowing optimization of population parameters rather than individual tuning functions. Numerical comparison with particle filtering demonstrates the quality of the approximation. The analytic framework leads to insights that are difficult to obtain from numerical algorithms and is consistent with biological observations about the distribution of sensory cells' preferred stimuli.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Decoding</subject><subject>Filtration</subject><subject>Letters</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Populations</subject><subject>Spiking</subject><subject>State estimation</subject><subject>Stimuli</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkc1LxDAQxYMouq7ePEvAiwer-di0ibdl13UFUWEVvIU0TaTaNjVpwf3vzer6gXgKTH7z3psZAA4wOsU4JWeN0U4qiTBGbAMMMKMo4Zw_boIB4kIkWZpmO2A3hGeEUBqhbbBDhBiJUUoHoL1tu7JWFZxGmaJsnqCzcLpsVF1quIhffVXCfAnnpjPePZnGuD7AO9f2lepK14QVv2jLl1Xrjel9LJ3DMZxULpgimTlfw3HbevcWXVYNe2DLqiqY_fU7BA-zi_vJPLm-vbyajK8TTRnpEq65ZTpjlBUUUayEYTwTHGmcGWILREYZETnXJi2stYqYFFmtaU6VSnmOFB2C40_d6P3am9DJugzaVJX6GEGSuItR3AYlET36gz673jcxnSSUMCRYFjMMwcknpb0LwRsrWx9n8kuJkVxdQv6-RMQP16J9XpviG_5a_U_Auvxl-K_WOyJdkxg</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Harel, Yuval</creator><creator>Meir, Ron</creator><creator>Opper, Manfred</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20180801</creationdate><title>Optimal Decoding of Dynamic Stimuli by Heterogeneous Populations of Spiking Neurons: A Closed-Form Approximation</title><author>Harel, Yuval ; Meir, Ron ; Opper, Manfred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-8c8f5c7535d3031a9e587980c17e2fd024729b8ce6dfffa2e60fcc3b3aa68b0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Decoding</topic><topic>Filtration</topic><topic>Letters</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Populations</topic><topic>Spiking</topic><topic>State estimation</topic><topic>Stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harel, Yuval</creatorcontrib><creatorcontrib>Meir, Ron</creatorcontrib><creatorcontrib>Opper, Manfred</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harel, Yuval</au><au>Meir, Ron</au><au>Opper, Manfred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Decoding of Dynamic Stimuli by Heterogeneous Populations of Spiking Neurons: A Closed-Form Approximation</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>30</volume><issue>8</issue><spage>2056</spage><epage>2112</epage><pages>2056-2112</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><abstract>Neural decoding may be formulated as dynamic state estimation (filtering) based on point-process observations, a generally intractable problem. Numerical sampling techniques are often practically useful for the decoding of real neural data. However, they are less useful as theoretical tools for modeling and understanding sensory neural systems, since they lead to limited conceptual insight into optimal encoding and decoding strategies. We consider sensory neural populations characterized by a distribution over neuron parameters. We develop an analytically tractable Bayesian approximation to optimal filtering based on the observation of spiking activity that greatly facilitates the analysis of optimal encoding in situations deviating from common assumptions of uniform coding. Continuous distributions are used to approximate large populations with few parameters, resulting in a filter whose complexity does not grow with population size and allowing optimization of population parameters rather than individual tuning functions. Numerical comparison with particle filtering demonstrates the quality of the approximation. The analytic framework leads to insights that are difficult to obtain from numerical algorithms and is consistent with biological observations about the distribution of sensory cells' preferred stimuli.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>29949463</pmid><doi>10.1162/neco_a_01105</doi><tpages>57</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0899-7667
ispartof Neural computation, 2018-08, Vol.30 (8), p.2056-2112
issn 0899-7667
1530-888X
language eng
recordid cdi_crossref_primary_10_1162_neco_a_01105
source MIT Press Journals
subjects Algorithms
Approximation
Decoding
Filtration
Letters
Optimization
Parameters
Populations
Spiking
State estimation
Stimuli
title Optimal Decoding of Dynamic Stimuli by Heterogeneous Populations of Spiking Neurons: A Closed-Form Approximation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A05%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Decoding%20of%20Dynamic%20Stimuli%20by%20Heterogeneous%20Populations%20of%20Spiking%20Neurons:%20A%20Closed-Form%20Approximation&rft.jtitle=Neural%20computation&rft.au=Harel,%20Yuval&rft.date=2018-08-01&rft.volume=30&rft.issue=8&rft.spage=2056&rft.epage=2112&rft.pages=2056-2112&rft.issn=0899-7667&rft.eissn=1530-888X&rft_id=info:doi/10.1162/neco_a_01105&rft_dat=%3Cproquest_cross%3E2325095730%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2325095730&rft_id=info:pmid/29949463&rfr_iscdi=true