Optimal Decoding of Dynamic Stimuli by Heterogeneous Populations of Spiking Neurons: A Closed-Form Approximation
Neural decoding may be formulated as dynamic state estimation (filtering) based on point-process observations, a generally intractable problem. Numerical sampling techniques are often practically useful for the decoding of real neural data. However, they are less useful as theoretical tools for mode...
Gespeichert in:
Veröffentlicht in: | Neural computation 2018-08, Vol.30 (8), p.2056-2112 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2112 |
---|---|
container_issue | 8 |
container_start_page | 2056 |
container_title | Neural computation |
container_volume | 30 |
creator | Harel, Yuval Meir, Ron Opper, Manfred |
description | Neural decoding may be formulated as dynamic state estimation (filtering) based on point-process observations, a generally intractable problem. Numerical sampling techniques are often practically useful for the decoding of real neural data. However, they are less useful as theoretical tools for modeling and understanding sensory neural systems, since they lead to limited conceptual insight into optimal encoding and decoding strategies. We consider sensory neural populations characterized by a distribution over neuron parameters. We develop an analytically tractable Bayesian approximation to optimal filtering based on the observation of spiking activity that greatly facilitates the analysis of optimal encoding in situations deviating from common assumptions of uniform coding. Continuous distributions are used to approximate large populations with few parameters, resulting in a filter whose complexity does not grow with population size and allowing optimization of population parameters rather than individual tuning functions. Numerical comparison with particle filtering demonstrates the quality of the approximation. The analytic framework leads to insights that are difficult to obtain from numerical algorithms and is consistent with biological observations about the distribution of sensory cells' preferred stimuli. |
doi_str_mv | 10.1162/neco_a_01105 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1162_neco_a_01105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2325095730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-8c8f5c7535d3031a9e587980c17e2fd024729b8ce6dfffa2e60fcc3b3aa68b0a3</originalsourceid><addsrcrecordid>eNptkc1LxDAQxYMouq7ePEvAiwer-di0ibdl13UFUWEVvIU0TaTaNjVpwf3vzer6gXgKTH7z3psZAA4wOsU4JWeN0U4qiTBGbAMMMKMo4Zw_boIB4kIkWZpmO2A3hGeEUBqhbbBDhBiJUUoHoL1tu7JWFZxGmaJsnqCzcLpsVF1quIhffVXCfAnnpjPePZnGuD7AO9f2lepK14QVv2jLl1Xrjel9LJ3DMZxULpgimTlfw3HbevcWXVYNe2DLqiqY_fU7BA-zi_vJPLm-vbyajK8TTRnpEq65ZTpjlBUUUayEYTwTHGmcGWILREYZETnXJi2stYqYFFmtaU6VSnmOFB2C40_d6P3am9DJugzaVJX6GEGSuItR3AYlET36gz673jcxnSSUMCRYFjMMwcknpb0LwRsrWx9n8kuJkVxdQv6-RMQP16J9XpviG_5a_U_Auvxl-K_WOyJdkxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2325095730</pqid></control><display><type>article</type><title>Optimal Decoding of Dynamic Stimuli by Heterogeneous Populations of Spiking Neurons: A Closed-Form Approximation</title><source>MIT Press Journals</source><creator>Harel, Yuval ; Meir, Ron ; Opper, Manfred</creator><creatorcontrib>Harel, Yuval ; Meir, Ron ; Opper, Manfred</creatorcontrib><description>Neural decoding may be formulated as dynamic state estimation (filtering) based on point-process observations, a generally intractable problem. Numerical sampling techniques are often practically useful for the decoding of real neural data. However, they are less useful as theoretical tools for modeling and understanding sensory neural systems, since they lead to limited conceptual insight into optimal encoding and decoding strategies. We consider sensory neural populations characterized by a distribution over neuron parameters. We develop an analytically tractable Bayesian approximation to optimal filtering based on the observation of spiking activity that greatly facilitates the analysis of optimal encoding in situations deviating from common assumptions of uniform coding. Continuous distributions are used to approximate large populations with few parameters, resulting in a filter whose complexity does not grow with population size and allowing optimization of population parameters rather than individual tuning functions. Numerical comparison with particle filtering demonstrates the quality of the approximation. The analytic framework leads to insights that are difficult to obtain from numerical algorithms and is consistent with biological observations about the distribution of sensory cells' preferred stimuli.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/neco_a_01105</identifier><identifier>PMID: 29949463</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Algorithms ; Approximation ; Decoding ; Filtration ; Letters ; Optimization ; Parameters ; Populations ; Spiking ; State estimation ; Stimuli</subject><ispartof>Neural computation, 2018-08, Vol.30 (8), p.2056-2112</ispartof><rights>Copyright MIT Press Journals, The Aug 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-8c8f5c7535d3031a9e587980c17e2fd024729b8ce6dfffa2e60fcc3b3aa68b0a3</citedby><cites>FETCH-LOGICAL-c352t-8c8f5c7535d3031a9e587980c17e2fd024729b8ce6dfffa2e60fcc3b3aa68b0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/neco_a_01105$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,53984,53985</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29949463$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harel, Yuval</creatorcontrib><creatorcontrib>Meir, Ron</creatorcontrib><creatorcontrib>Opper, Manfred</creatorcontrib><title>Optimal Decoding of Dynamic Stimuli by Heterogeneous Populations of Spiking Neurons: A Closed-Form Approximation</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>Neural decoding may be formulated as dynamic state estimation (filtering) based on point-process observations, a generally intractable problem. Numerical sampling techniques are often practically useful for the decoding of real neural data. However, they are less useful as theoretical tools for modeling and understanding sensory neural systems, since they lead to limited conceptual insight into optimal encoding and decoding strategies. We consider sensory neural populations characterized by a distribution over neuron parameters. We develop an analytically tractable Bayesian approximation to optimal filtering based on the observation of spiking activity that greatly facilitates the analysis of optimal encoding in situations deviating from common assumptions of uniform coding. Continuous distributions are used to approximate large populations with few parameters, resulting in a filter whose complexity does not grow with population size and allowing optimization of population parameters rather than individual tuning functions. Numerical comparison with particle filtering demonstrates the quality of the approximation. The analytic framework leads to insights that are difficult to obtain from numerical algorithms and is consistent with biological observations about the distribution of sensory cells' preferred stimuli.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Decoding</subject><subject>Filtration</subject><subject>Letters</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Populations</subject><subject>Spiking</subject><subject>State estimation</subject><subject>Stimuli</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkc1LxDAQxYMouq7ePEvAiwer-di0ibdl13UFUWEVvIU0TaTaNjVpwf3vzer6gXgKTH7z3psZAA4wOsU4JWeN0U4qiTBGbAMMMKMo4Zw_boIB4kIkWZpmO2A3hGeEUBqhbbBDhBiJUUoHoL1tu7JWFZxGmaJsnqCzcLpsVF1quIhffVXCfAnnpjPePZnGuD7AO9f2lepK14QVv2jLl1Xrjel9LJ3DMZxULpgimTlfw3HbevcWXVYNe2DLqiqY_fU7BA-zi_vJPLm-vbyajK8TTRnpEq65ZTpjlBUUUayEYTwTHGmcGWILREYZETnXJi2stYqYFFmtaU6VSnmOFB2C40_d6P3am9DJugzaVJX6GEGSuItR3AYlET36gz673jcxnSSUMCRYFjMMwcknpb0LwRsrWx9n8kuJkVxdQv6-RMQP16J9XpviG_5a_U_Auvxl-K_WOyJdkxg</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Harel, Yuval</creator><creator>Meir, Ron</creator><creator>Opper, Manfred</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20180801</creationdate><title>Optimal Decoding of Dynamic Stimuli by Heterogeneous Populations of Spiking Neurons: A Closed-Form Approximation</title><author>Harel, Yuval ; Meir, Ron ; Opper, Manfred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-8c8f5c7535d3031a9e587980c17e2fd024729b8ce6dfffa2e60fcc3b3aa68b0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Decoding</topic><topic>Filtration</topic><topic>Letters</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Populations</topic><topic>Spiking</topic><topic>State estimation</topic><topic>Stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harel, Yuval</creatorcontrib><creatorcontrib>Meir, Ron</creatorcontrib><creatorcontrib>Opper, Manfred</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harel, Yuval</au><au>Meir, Ron</au><au>Opper, Manfred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Decoding of Dynamic Stimuli by Heterogeneous Populations of Spiking Neurons: A Closed-Form Approximation</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>30</volume><issue>8</issue><spage>2056</spage><epage>2112</epage><pages>2056-2112</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><abstract>Neural decoding may be formulated as dynamic state estimation (filtering) based on point-process observations, a generally intractable problem. Numerical sampling techniques are often practically useful for the decoding of real neural data. However, they are less useful as theoretical tools for modeling and understanding sensory neural systems, since they lead to limited conceptual insight into optimal encoding and decoding strategies. We consider sensory neural populations characterized by a distribution over neuron parameters. We develop an analytically tractable Bayesian approximation to optimal filtering based on the observation of spiking activity that greatly facilitates the analysis of optimal encoding in situations deviating from common assumptions of uniform coding. Continuous distributions are used to approximate large populations with few parameters, resulting in a filter whose complexity does not grow with population size and allowing optimization of population parameters rather than individual tuning functions. Numerical comparison with particle filtering demonstrates the quality of the approximation. The analytic framework leads to insights that are difficult to obtain from numerical algorithms and is consistent with biological observations about the distribution of sensory cells' preferred stimuli.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>29949463</pmid><doi>10.1162/neco_a_01105</doi><tpages>57</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-7667 |
ispartof | Neural computation, 2018-08, Vol.30 (8), p.2056-2112 |
issn | 0899-7667 1530-888X |
language | eng |
recordid | cdi_crossref_primary_10_1162_neco_a_01105 |
source | MIT Press Journals |
subjects | Algorithms Approximation Decoding Filtration Letters Optimization Parameters Populations Spiking State estimation Stimuli |
title | Optimal Decoding of Dynamic Stimuli by Heterogeneous Populations of Spiking Neurons: A Closed-Form Approximation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A05%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Decoding%20of%20Dynamic%20Stimuli%20by%20Heterogeneous%20Populations%20of%20Spiking%20Neurons:%20A%20Closed-Form%20Approximation&rft.jtitle=Neural%20computation&rft.au=Harel,%20Yuval&rft.date=2018-08-01&rft.volume=30&rft.issue=8&rft.spage=2056&rft.epage=2112&rft.pages=2056-2112&rft.issn=0899-7667&rft.eissn=1530-888X&rft_id=info:doi/10.1162/neco_a_01105&rft_dat=%3Cproquest_cross%3E2325095730%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2325095730&rft_id=info:pmid/29949463&rfr_iscdi=true |