Extraction of Synaptic Input Properties in Vivo

Knowledge of synaptic input is crucial for understanding synaptic integration and ultimately neural function. However, , the rates at which synaptic inputs arrive are high, so that it is typically impossible to detect single events. We show here that it is nevertheless possible to extract the proper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 2017-07, Vol.29 (7), p.1745-1768
Hauptverfasser: Puggioni, Paolo, Jelitai, Marta, Duguid, Ian, van Rossum, Mark C.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1768
container_issue 7
container_start_page 1745
container_title Neural computation
container_volume 29
creator Puggioni, Paolo
Jelitai, Marta
Duguid, Ian
van Rossum, Mark C.W.
description Knowledge of synaptic input is crucial for understanding synaptic integration and ultimately neural function. However, , the rates at which synaptic inputs arrive are high, so that it is typically impossible to detect single events. We show here that it is nevertheless possible to extract the properties of the events and, in particular, to extract the event rate, the synaptic time constants, and the properties of the event size distribution from voltage-clamp recordings. Applied to cerebellar interneurons, our method reveals that the synaptic input rate increases from 600 Hz during rest to 1000 Hz during locomotion, while the amplitude and shape of the synaptic events are unaffected by this state change. This method thus complements existing methods to measure neural function .
doi_str_mv 10.1162/NECO_a_00975
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1162_NECO_a_00975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1927113458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-3500f6c771722b3765dc306239ab82eaa68e4fe840c20f690220f2ef61b9bcb73</originalsourceid><addsrcrecordid>eNpt0M1LHDEYBvBQKnW13nouA714cPTNm8nXrbKsHyC10A-8hUzMQGR3Mk1mRP3rTV2VRTzlkB_P-_AQ8oXCIaUCj34s5pfGGgAt-Qcyo5xBrZS6-khmoLSupRBym-zkfAMAggL_RLZRcYGIMCNHi7sxWTeG2Fexq37d93YYg6vO-2Eaq58pDj6Nwecq9NXfcBs_k63OLrPfe353yZ-Txe_5WX1xeXo-P76oHadsrBkH6ISTkkrElknBrx0DgUzbVqG3VijfdF414LBADaVMh74TtNWtayXbJfvr3CHFf5PPo1mF7PxyaXsfp2yohkaDEtgU-u0NvYlT6ku7olBSyhquijpYK5dizsl3ZkhhZdO9oWD-D2k2hyz863Po1K789St-Wa6A72uwChsHe-_iLeogDQPkXBkEpCXegDYPYXj637ix_07Eu3UeAck0jXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927113458</pqid></control><display><type>article</type><title>Extraction of Synaptic Input Properties in Vivo</title><source>MIT Press Journals</source><creator>Puggioni, Paolo ; Jelitai, Marta ; Duguid, Ian ; van Rossum, Mark C.W.</creator><creatorcontrib>Puggioni, Paolo ; Jelitai, Marta ; Duguid, Ian ; van Rossum, Mark C.W.</creatorcontrib><description>Knowledge of synaptic input is crucial for understanding synaptic integration and ultimately neural function. However, , the rates at which synaptic inputs arrive are high, so that it is typically impossible to detect single events. We show here that it is nevertheless possible to extract the properties of the events and, in particular, to extract the event rate, the synaptic time constants, and the properties of the event size distribution from voltage-clamp recordings. Applied to cerebellar interneurons, our method reveals that the synaptic input rate increases from 600 Hz during rest to 1000 Hz during locomotion, while the amplitude and shape of the synaptic events are unaffected by this state change. This method thus complements existing methods to measure neural function .</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/NECO_a_00975</identifier><identifier>PMID: 28562220</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Brain ; Constants ; In vivo methods and tests ; Knowledge ; Locomotion ; Measurement methods ; Neural networks ; Neurons ; Particle size distribution ; Properties (attributes)</subject><ispartof>Neural computation, 2017-07, Vol.29 (7), p.1745-1768</ispartof><rights>Copyright MIT Press Journals Jul 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-3500f6c771722b3765dc306239ab82eaa68e4fe840c20f690220f2ef61b9bcb73</citedby><cites>FETCH-LOGICAL-c513t-3500f6c771722b3765dc306239ab82eaa68e4fe840c20f690220f2ef61b9bcb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/NECO_a_00975$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54009,54010</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28562220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Puggioni, Paolo</creatorcontrib><creatorcontrib>Jelitai, Marta</creatorcontrib><creatorcontrib>Duguid, Ian</creatorcontrib><creatorcontrib>van Rossum, Mark C.W.</creatorcontrib><title>Extraction of Synaptic Input Properties in Vivo</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>Knowledge of synaptic input is crucial for understanding synaptic integration and ultimately neural function. However, , the rates at which synaptic inputs arrive are high, so that it is typically impossible to detect single events. We show here that it is nevertheless possible to extract the properties of the events and, in particular, to extract the event rate, the synaptic time constants, and the properties of the event size distribution from voltage-clamp recordings. Applied to cerebellar interneurons, our method reveals that the synaptic input rate increases from 600 Hz during rest to 1000 Hz during locomotion, while the amplitude and shape of the synaptic events are unaffected by this state change. This method thus complements existing methods to measure neural function .</description><subject>Brain</subject><subject>Constants</subject><subject>In vivo methods and tests</subject><subject>Knowledge</subject><subject>Locomotion</subject><subject>Measurement methods</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Particle size distribution</subject><subject>Properties (attributes)</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpt0M1LHDEYBvBQKnW13nouA714cPTNm8nXrbKsHyC10A-8hUzMQGR3Mk1mRP3rTV2VRTzlkB_P-_AQ8oXCIaUCj34s5pfGGgAt-Qcyo5xBrZS6-khmoLSupRBym-zkfAMAggL_RLZRcYGIMCNHi7sxWTeG2Fexq37d93YYg6vO-2Eaq58pDj6Nwecq9NXfcBs_k63OLrPfe353yZ-Txe_5WX1xeXo-P76oHadsrBkH6ISTkkrElknBrx0DgUzbVqG3VijfdF414LBADaVMh74TtNWtayXbJfvr3CHFf5PPo1mF7PxyaXsfp2yohkaDEtgU-u0NvYlT6ku7olBSyhquijpYK5dizsl3ZkhhZdO9oWD-D2k2hyz863Po1K789St-Wa6A72uwChsHe-_iLeogDQPkXBkEpCXegDYPYXj637ix_07Eu3UeAck0jXg</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Puggioni, Paolo</creator><creator>Jelitai, Marta</creator><creator>Duguid, Ian</creator><creator>van Rossum, Mark C.W.</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20170701</creationdate><title>Extraction of Synaptic Input Properties in Vivo</title><author>Puggioni, Paolo ; Jelitai, Marta ; Duguid, Ian ; van Rossum, Mark C.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-3500f6c771722b3765dc306239ab82eaa68e4fe840c20f690220f2ef61b9bcb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Brain</topic><topic>Constants</topic><topic>In vivo methods and tests</topic><topic>Knowledge</topic><topic>Locomotion</topic><topic>Measurement methods</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Particle size distribution</topic><topic>Properties (attributes)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puggioni, Paolo</creatorcontrib><creatorcontrib>Jelitai, Marta</creatorcontrib><creatorcontrib>Duguid, Ian</creatorcontrib><creatorcontrib>van Rossum, Mark C.W.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puggioni, Paolo</au><au>Jelitai, Marta</au><au>Duguid, Ian</au><au>van Rossum, Mark C.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extraction of Synaptic Input Properties in Vivo</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>29</volume><issue>7</issue><spage>1745</spage><epage>1768</epage><pages>1745-1768</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><abstract>Knowledge of synaptic input is crucial for understanding synaptic integration and ultimately neural function. However, , the rates at which synaptic inputs arrive are high, so that it is typically impossible to detect single events. We show here that it is nevertheless possible to extract the properties of the events and, in particular, to extract the event rate, the synaptic time constants, and the properties of the event size distribution from voltage-clamp recordings. Applied to cerebellar interneurons, our method reveals that the synaptic input rate increases from 600 Hz during rest to 1000 Hz during locomotion, while the amplitude and shape of the synaptic events are unaffected by this state change. This method thus complements existing methods to measure neural function .</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>28562220</pmid><doi>10.1162/NECO_a_00975</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0899-7667
ispartof Neural computation, 2017-07, Vol.29 (7), p.1745-1768
issn 0899-7667
1530-888X
language eng
recordid cdi_crossref_primary_10_1162_NECO_a_00975
source MIT Press Journals
subjects Brain
Constants
In vivo methods and tests
Knowledge
Locomotion
Measurement methods
Neural networks
Neurons
Particle size distribution
Properties (attributes)
title Extraction of Synaptic Input Properties in Vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A47%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extraction%20of%20Synaptic%20Input%20Properties%20in%20Vivo&rft.jtitle=Neural%20computation&rft.au=Puggioni,%20Paolo&rft.date=2017-07-01&rft.volume=29&rft.issue=7&rft.spage=1745&rft.epage=1768&rft.pages=1745-1768&rft.issn=0899-7667&rft.eissn=1530-888X&rft_id=info:doi/10.1162/NECO_a_00975&rft_dat=%3Cproquest_cross%3E1927113458%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927113458&rft_id=info:pmid/28562220&rfr_iscdi=true