Processing Objects at Different Levels of Specificity

How objects are represented and processed in the brain is a central topic in cognitive neuroscience. Previous studies have shown that knowledge of objects is represented in a featurebased distributed neural system primarily involving occipital and temporal cortical regions. Research with nonhuman pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cognitive neuroscience 2004-04, Vol.16 (3), p.351-362
Hauptverfasser: Tyler, L. K., Stamatakis, E. A., Bright, P., Acres, K., Abdallah, S., Rodd, J. M., Moss, H. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 362
container_issue 3
container_start_page 351
container_title Journal of cognitive neuroscience
container_volume 16
creator Tyler, L. K.
Stamatakis, E. A.
Bright, P.
Acres, K.
Abdallah, S.
Rodd, J. M.
Moss, H. E.
description How objects are represented and processed in the brain is a central topic in cognitive neuroscience. Previous studies have shown that knowledge of objects is represented in a featurebased distributed neural system primarily involving occipital and temporal cortical regions. Research with nonhuman primates suggest that these features are structured in a hierarchical system with posterior neurons in the inferior temporal cortex representing simple features and anterior neurons in the perirhinal cortex representing complex conjunctions of features (Bussey & Saksida, 2002; Murray & Bussey, 1999). On this account, the perirhinal cortex plays a crucial role in object identification by integrating information from different sensory systems into more complex polymodal feature conjunctions. We tested the implications of these claims for human object processing in an event-related fMRI study in which we presented colored pictures of common objects for 19 subjects to name at two levels of specificity-basic and domain. We reasoned that domain-level naming requires access to a coarsergrained representation of objects, thus involving only posterior regions of the inferior temporal cortex. In contrast, basic-level naming requires finer-grained discrimination to differentiate between similar objects, and thus should involve anterior temporal regions, including the perirhinal cortex. We found that object processing always activated the fusiform gyrus bilaterally, irrespective of the task, whereas the perirhinal cortex was only activated when the task required finer-grained discriminations. These results suggest that the same kind of hierarchical structure, which has been proposed for object processing in the monkey temporal cortex, functions in the human.
doi_str_mv 10.1162/089892904322926692
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1162_089892904322926692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71813333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-3e07f98e90dc0ac7cdd9413613d0dc6432ee74d47c563b958bdae3a6d497f07e3</originalsourceid><addsrcrecordid>eNqF0F1LWzEYB_AwlLW6fYFdjIMw747m_eVSdFWhoLANdhfSnCcj5fScmpwW9NOb0oIyi-YmkPyef548CH0j-IwQSc-xNtpQgzmj1FApDf2ExkQwXOtyc4DGG1AX8XeEjnKeY4ypkPwzGhGBFZWKjJG4T72HnGP3r7qbzcEPuXJDdRVDgATdUE1hDW2u-lD9WoKPIfo4PH5Bh8G1Gb7u9mP0Z_Lz9-VNPb27vr28mNaeazPUDLAKRoPBjcfOK980hhMmCWvKiSx9AyjecOWFZDMj9KxxwJxsuFEBK2DH6HSbu0z9wwryYBcxe2hb10G_ylYRTdhmfQSJUoISTgs8-Q_O-1XqyicspQwrwY0uiG6RT33OCYJdprhw6dESbDejt29HX4q-75JXswU0LyW7WRfwYwdc9q4NyXU-5ldOGC24Ku5s6xbxVXfvvjzZUzDvfbcmMjLLMCVaWVq2klES7FNc7gt6BoV4q0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223075498</pqid></control><display><type>article</type><title>Processing Objects at Different Levels of Specificity</title><source>MEDLINE</source><source>MIT Press Journals</source><creator>Tyler, L. K. ; Stamatakis, E. A. ; Bright, P. ; Acres, K. ; Abdallah, S. ; Rodd, J. M. ; Moss, H. E.</creator><creatorcontrib>Tyler, L. K. ; Stamatakis, E. A. ; Bright, P. ; Acres, K. ; Abdallah, S. ; Rodd, J. M. ; Moss, H. E.</creatorcontrib><description>How objects are represented and processed in the brain is a central topic in cognitive neuroscience. Previous studies have shown that knowledge of objects is represented in a featurebased distributed neural system primarily involving occipital and temporal cortical regions. Research with nonhuman primates suggest that these features are structured in a hierarchical system with posterior neurons in the inferior temporal cortex representing simple features and anterior neurons in the perirhinal cortex representing complex conjunctions of features (Bussey &amp; Saksida, 2002; Murray &amp; Bussey, 1999). On this account, the perirhinal cortex plays a crucial role in object identification by integrating information from different sensory systems into more complex polymodal feature conjunctions. We tested the implications of these claims for human object processing in an event-related fMRI study in which we presented colored pictures of common objects for 19 subjects to name at two levels of specificity-basic and domain. We reasoned that domain-level naming requires access to a coarsergrained representation of objects, thus involving only posterior regions of the inferior temporal cortex. In contrast, basic-level naming requires finer-grained discrimination to differentiate between similar objects, and thus should involve anterior temporal regions, including the perirhinal cortex. We found that object processing always activated the fusiform gyrus bilaterally, irrespective of the task, whereas the perirhinal cortex was only activated when the task required finer-grained discriminations. These results suggest that the same kind of hierarchical structure, which has been proposed for object processing in the monkey temporal cortex, functions in the human.</description><identifier>ISSN: 0898-929X</identifier><identifier>EISSN: 1530-8898</identifier><identifier>DOI: 10.1162/089892904322926692</identifier><identifier>PMID: 15072671</identifier><identifier>CODEN: JCONEO</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Adult ; Anatomical correlates of behavior ; Behavioral psychophysiology ; Biological and medical sciences ; Brain ; Brain Mapping ; Brain research ; Cerebral Cortex - pathology ; Cerebral Cortex - physiopathology ; Cognition &amp; reasoning ; Computer Graphics ; Dementia - physiopathology ; Discrimination Learning ; Dominance, Cerebral - physiology ; Female ; Fundamental and applied biological sciences. Psychology ; Humans ; Magnetic Resonance Imaging - methods ; Male ; Mental Processes - physiology ; Names ; Neurology ; Neurons ; Pattern Recognition, Visual - physiology ; Photic Stimulation - methods ; Primates ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Semantics ; Sensitivity and Specificity</subject><ispartof>Journal of cognitive neuroscience, 2004-04, Vol.16 (3), p.351-362</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright MIT Press Journals Apr 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-3e07f98e90dc0ac7cdd9413613d0dc6432ee74d47c563b958bdae3a6d497f07e3</citedby><cites>FETCH-LOGICAL-c489t-3e07f98e90dc0ac7cdd9413613d0dc6432ee74d47c563b958bdae3a6d497f07e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/jocn/article/doi/10.1162/089892904322926692$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,54014,54015</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15598547$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15072671$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tyler, L. K.</creatorcontrib><creatorcontrib>Stamatakis, E. A.</creatorcontrib><creatorcontrib>Bright, P.</creatorcontrib><creatorcontrib>Acres, K.</creatorcontrib><creatorcontrib>Abdallah, S.</creatorcontrib><creatorcontrib>Rodd, J. M.</creatorcontrib><creatorcontrib>Moss, H. E.</creatorcontrib><title>Processing Objects at Different Levels of Specificity</title><title>Journal of cognitive neuroscience</title><addtitle>J Cogn Neurosci</addtitle><description>How objects are represented and processed in the brain is a central topic in cognitive neuroscience. Previous studies have shown that knowledge of objects is represented in a featurebased distributed neural system primarily involving occipital and temporal cortical regions. Research with nonhuman primates suggest that these features are structured in a hierarchical system with posterior neurons in the inferior temporal cortex representing simple features and anterior neurons in the perirhinal cortex representing complex conjunctions of features (Bussey &amp; Saksida, 2002; Murray &amp; Bussey, 1999). On this account, the perirhinal cortex plays a crucial role in object identification by integrating information from different sensory systems into more complex polymodal feature conjunctions. We tested the implications of these claims for human object processing in an event-related fMRI study in which we presented colored pictures of common objects for 19 subjects to name at two levels of specificity-basic and domain. We reasoned that domain-level naming requires access to a coarsergrained representation of objects, thus involving only posterior regions of the inferior temporal cortex. In contrast, basic-level naming requires finer-grained discrimination to differentiate between similar objects, and thus should involve anterior temporal regions, including the perirhinal cortex. We found that object processing always activated the fusiform gyrus bilaterally, irrespective of the task, whereas the perirhinal cortex was only activated when the task required finer-grained discriminations. These results suggest that the same kind of hierarchical structure, which has been proposed for object processing in the monkey temporal cortex, functions in the human.</description><subject>Adult</subject><subject>Anatomical correlates of behavior</subject><subject>Behavioral psychophysiology</subject><subject>Biological and medical sciences</subject><subject>Brain</subject><subject>Brain Mapping</subject><subject>Brain research</subject><subject>Cerebral Cortex - pathology</subject><subject>Cerebral Cortex - physiopathology</subject><subject>Cognition &amp; reasoning</subject><subject>Computer Graphics</subject><subject>Dementia - physiopathology</subject><subject>Discrimination Learning</subject><subject>Dominance, Cerebral - physiology</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Mental Processes - physiology</subject><subject>Names</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Pattern Recognition, Visual - physiology</subject><subject>Photic Stimulation - methods</subject><subject>Primates</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Semantics</subject><subject>Sensitivity and Specificity</subject><issn>0898-929X</issn><issn>1530-8898</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0F1LWzEYB_AwlLW6fYFdjIMw747m_eVSdFWhoLANdhfSnCcj5fScmpwW9NOb0oIyi-YmkPyef548CH0j-IwQSc-xNtpQgzmj1FApDf2ExkQwXOtyc4DGG1AX8XeEjnKeY4ypkPwzGhGBFZWKjJG4T72HnGP3r7qbzcEPuXJDdRVDgATdUE1hDW2u-lD9WoKPIfo4PH5Bh8G1Gb7u9mP0Z_Lz9-VNPb27vr28mNaeazPUDLAKRoPBjcfOK980hhMmCWvKiSx9AyjecOWFZDMj9KxxwJxsuFEBK2DH6HSbu0z9wwryYBcxe2hb10G_ylYRTdhmfQSJUoISTgs8-Q_O-1XqyicspQwrwY0uiG6RT33OCYJdprhw6dESbDejt29HX4q-75JXswU0LyW7WRfwYwdc9q4NyXU-5ldOGC24Ku5s6xbxVXfvvjzZUzDvfbcmMjLLMCVaWVq2klES7FNc7gt6BoV4q0g</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Tyler, L. K.</creator><creator>Stamatakis, E. A.</creator><creator>Bright, P.</creator><creator>Acres, K.</creator><creator>Abdallah, S.</creator><creator>Rodd, J. M.</creator><creator>Moss, H. E.</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20040401</creationdate><title>Processing Objects at Different Levels of Specificity</title><author>Tyler, L. K. ; Stamatakis, E. A. ; Bright, P. ; Acres, K. ; Abdallah, S. ; Rodd, J. M. ; Moss, H. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-3e07f98e90dc0ac7cdd9413613d0dc6432ee74d47c563b958bdae3a6d497f07e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adult</topic><topic>Anatomical correlates of behavior</topic><topic>Behavioral psychophysiology</topic><topic>Biological and medical sciences</topic><topic>Brain</topic><topic>Brain Mapping</topic><topic>Brain research</topic><topic>Cerebral Cortex - pathology</topic><topic>Cerebral Cortex - physiopathology</topic><topic>Cognition &amp; reasoning</topic><topic>Computer Graphics</topic><topic>Dementia - physiopathology</topic><topic>Discrimination Learning</topic><topic>Dominance, Cerebral - physiology</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Mental Processes - physiology</topic><topic>Names</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Pattern Recognition, Visual - physiology</topic><topic>Photic Stimulation - methods</topic><topic>Primates</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Semantics</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tyler, L. K.</creatorcontrib><creatorcontrib>Stamatakis, E. A.</creatorcontrib><creatorcontrib>Bright, P.</creatorcontrib><creatorcontrib>Acres, K.</creatorcontrib><creatorcontrib>Abdallah, S.</creatorcontrib><creatorcontrib>Rodd, J. M.</creatorcontrib><creatorcontrib>Moss, H. E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cognitive neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tyler, L. K.</au><au>Stamatakis, E. A.</au><au>Bright, P.</au><au>Acres, K.</au><au>Abdallah, S.</au><au>Rodd, J. M.</au><au>Moss, H. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Processing Objects at Different Levels of Specificity</atitle><jtitle>Journal of cognitive neuroscience</jtitle><addtitle>J Cogn Neurosci</addtitle><date>2004-04-01</date><risdate>2004</risdate><volume>16</volume><issue>3</issue><spage>351</spage><epage>362</epage><pages>351-362</pages><issn>0898-929X</issn><eissn>1530-8898</eissn><coden>JCONEO</coden><abstract>How objects are represented and processed in the brain is a central topic in cognitive neuroscience. Previous studies have shown that knowledge of objects is represented in a featurebased distributed neural system primarily involving occipital and temporal cortical regions. Research with nonhuman primates suggest that these features are structured in a hierarchical system with posterior neurons in the inferior temporal cortex representing simple features and anterior neurons in the perirhinal cortex representing complex conjunctions of features (Bussey &amp; Saksida, 2002; Murray &amp; Bussey, 1999). On this account, the perirhinal cortex plays a crucial role in object identification by integrating information from different sensory systems into more complex polymodal feature conjunctions. We tested the implications of these claims for human object processing in an event-related fMRI study in which we presented colored pictures of common objects for 19 subjects to name at two levels of specificity-basic and domain. We reasoned that domain-level naming requires access to a coarsergrained representation of objects, thus involving only posterior regions of the inferior temporal cortex. In contrast, basic-level naming requires finer-grained discrimination to differentiate between similar objects, and thus should involve anterior temporal regions, including the perirhinal cortex. We found that object processing always activated the fusiform gyrus bilaterally, irrespective of the task, whereas the perirhinal cortex was only activated when the task required finer-grained discriminations. These results suggest that the same kind of hierarchical structure, which has been proposed for object processing in the monkey temporal cortex, functions in the human.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>15072671</pmid><doi>10.1162/089892904322926692</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-929X
ispartof Journal of cognitive neuroscience, 2004-04, Vol.16 (3), p.351-362
issn 0898-929X
1530-8898
language eng
recordid cdi_crossref_primary_10_1162_089892904322926692
source MEDLINE; MIT Press Journals
subjects Adult
Anatomical correlates of behavior
Behavioral psychophysiology
Biological and medical sciences
Brain
Brain Mapping
Brain research
Cerebral Cortex - pathology
Cerebral Cortex - physiopathology
Cognition & reasoning
Computer Graphics
Dementia - physiopathology
Discrimination Learning
Dominance, Cerebral - physiology
Female
Fundamental and applied biological sciences. Psychology
Humans
Magnetic Resonance Imaging - methods
Male
Mental Processes - physiology
Names
Neurology
Neurons
Pattern Recognition, Visual - physiology
Photic Stimulation - methods
Primates
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Semantics
Sensitivity and Specificity
title Processing Objects at Different Levels of Specificity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T02%3A18%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Processing%20Objects%20at%20Different%20Levels%20of%20Specificity&rft.jtitle=Journal%20of%20cognitive%20neuroscience&rft.au=Tyler,%20L.%20K.&rft.date=2004-04-01&rft.volume=16&rft.issue=3&rft.spage=351&rft.epage=362&rft.pages=351-362&rft.issn=0898-929X&rft.eissn=1530-8898&rft.coden=JCONEO&rft_id=info:doi/10.1162/089892904322926692&rft_dat=%3Cproquest_cross%3E71813333%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223075498&rft_id=info:pmid/15072671&rfr_iscdi=true