Identifying Signalling Pathways Regulated by GPRC5B in β-Cells by CRISPR-Cas9-Mediated Genome Editing
Background/Aims: CRISPR-Cas9, a RNA-guided targeted genome editing tool, has revolutionized genetic engineering by offering the ability to precisely modify DNA. GPRC5B is an orphan receptor belonging to the group C family of G protein-coupled receptors (GPCRs). In this study, we analysed the functio...
Gespeichert in:
Veröffentlicht in: | Cellular physiology and biochemistry 2018-01, Vol.45 (2), p.656-666 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 666 |
---|---|
container_issue | 2 |
container_start_page | 656 |
container_title | Cellular physiology and biochemistry |
container_volume | 45 |
creator | Atanes, Patricio Ruz-Maldonado, Inmaculada Hawkes, Ross Liu, Bo Persaud, Shanta J. Amisten, Stefan |
description | Background/Aims: CRISPR-Cas9, a RNA-guided targeted genome editing tool, has revolutionized genetic engineering by offering the ability to precisely modify DNA. GPRC5B is an orphan receptor belonging to the group C family of G protein-coupled receptors (GPCRs). In this study, we analysed the functional roles of the Gprc5b receptor in MIN6 β-cells using CRISPR-Cas9 and transient over-expression of Gprc5b. Methods: The optimal transfection reagent for use in MIN6 β-cells was determined by analysing efficiency of GFP plasmid delivery by cell sorting. A MIN6 β-cell line in which Gprc5b expression was knocked down (Gprc5b KD) was generated using CRISPR-Cas9 technology. Gprc5b receptor mRNA expression, proliferation, apoptosis, Cignal 45-Pathway Reporter Array signalling and western blot assays were carried out using Gpcr5b KD MIN6 β-cells that had been transiently transfected with different concentrations of mouse Gprc5b plasmid to over-express Gprc5b. Results: JetPRIME® was the best candidate for MIN6 β-cell transfection, providing approximately 30% transfection efficiency. CRISPR-Cas9 technology targeting Gprc5b led to stable knock-down of this receptor in MIN6 β-cells and its re-expression induced proliferation and potentiated cytokine- and palmitate-induced apoptosis. The Cignal 45 Reporter analysis indicated Gprc5b-dependent regulation of apoptotic and proliferative pathways, and western blotting confirmed activation of signalling via TGF-β and IFNγ. Conclusion: This study provides evidence of CRISPR-Cas9 technology being used to down-regulate Gprc5b expression in MIN6 β-cells. This strategy allowed us to identify signalling pathways linking GPRC5B receptor expression to β-cell proliferation and apoptosis. |
doi_str_mv | 10.1159/000487159 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1159_000487159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_28977d5856324210b0b082134d708d7e</doaj_id><sourcerecordid>2117159326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-1b888278e7a912c091beeb51251c503ca89eebb9561d31649c6a7af2600e8a023</originalsourceid><addsrcrecordid>eNptkU2P0zAQhi0EYj_gwB2hSFzgEPA4cWwf2WgplRZRdeFsOfEkuKRJ106E-rf2h_CbcLalSAj54JnRo3c-XkJeAH0HwNV7SmkuRYwekXPIGaRKCPk4xhR4KpUUZ-QihA2NqVDsKTljKqdSMnZOmqXFfnTN3vVtcuva3nTdHK7M-P2n2Ydkje3UmRFtUu2TxWpd8qvE9cmv-7TErgtztVwvb1frtDRBpZ_Rugd6gf2wxeTaujHqPSNPGtMFfH78L8m3j9dfy0_pzZfFsvxwk9Z5kY0pVDKOJSQKo4DVVEGFWHFgHGpOs9pIFfNK8QJsBkWu6sII07CCUpSGsuySLA-6djAbvfNua_xeD8bph8LgW2386OoONZPxSpZLXmQs3oxW8UkGWW4FlVZg1Hpz0Nr54W7CMOqtC3Vc2vQ4TEGDUgpULooioq__QTfD5OMtg2YAszMZm6m3B6r2Qwgem9OAQPVspD4ZGdlXR8Wp2qI9kX-c-9vyh_Et-hNQrq4OEnpnm0i9_C917PIbtE-o7A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117159326</pqid></control><display><type>article</type><title>Identifying Signalling Pathways Regulated by GPRC5B in β-Cells by CRISPR-Cas9-Mediated Genome Editing</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Karger Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Atanes, Patricio ; Ruz-Maldonado, Inmaculada ; Hawkes, Ross ; Liu, Bo ; Persaud, Shanta J. ; Amisten, Stefan</creator><creatorcontrib>Atanes, Patricio ; Ruz-Maldonado, Inmaculada ; Hawkes, Ross ; Liu, Bo ; Persaud, Shanta J. ; Amisten, Stefan</creatorcontrib><description>Background/Aims: CRISPR-Cas9, a RNA-guided targeted genome editing tool, has revolutionized genetic engineering by offering the ability to precisely modify DNA. GPRC5B is an orphan receptor belonging to the group C family of G protein-coupled receptors (GPCRs). In this study, we analysed the functional roles of the Gprc5b receptor in MIN6 β-cells using CRISPR-Cas9 and transient over-expression of Gprc5b. Methods: The optimal transfection reagent for use in MIN6 β-cells was determined by analysing efficiency of GFP plasmid delivery by cell sorting. A MIN6 β-cell line in which Gprc5b expression was knocked down (Gprc5b KD) was generated using CRISPR-Cas9 technology. Gprc5b receptor mRNA expression, proliferation, apoptosis, Cignal 45-Pathway Reporter Array signalling and western blot assays were carried out using Gpcr5b KD MIN6 β-cells that had been transiently transfected with different concentrations of mouse Gprc5b plasmid to over-express Gprc5b. Results: JetPRIME® was the best candidate for MIN6 β-cell transfection, providing approximately 30% transfection efficiency. CRISPR-Cas9 technology targeting Gprc5b led to stable knock-down of this receptor in MIN6 β-cells and its re-expression induced proliferation and potentiated cytokine- and palmitate-induced apoptosis. The Cignal 45 Reporter analysis indicated Gprc5b-dependent regulation of apoptotic and proliferative pathways, and western blotting confirmed activation of signalling via TGF-β and IFNγ. Conclusion: This study provides evidence of CRISPR-Cas9 technology being used to down-regulate Gprc5b expression in MIN6 β-cells. This strategy allowed us to identify signalling pathways linking GPRC5B receptor expression to β-cell proliferation and apoptosis.</description><identifier>ISSN: 1015-8987</identifier><identifier>EISSN: 1421-9778</identifier><identifier>DOI: 10.1159/000487159</identifier><identifier>PMID: 29408822</identifier><language>eng</language><publisher>Basel, Switzerland: S. Karger AG</publisher><subject>Animals ; Apoptosis ; Apoptosis - drug effects ; Apoptosis Regulatory Proteins - metabolism ; Base Sequence ; Cell culture ; Cell growth ; Cell Line, Tumor ; Cell Proliferation ; Cloning ; CRISPR ; CRISPR-Cas Systems - genetics ; CRISPR-Cas9 ; Deoxyribonucleic acid ; Diabetes ; DNA ; Gene Editing ; Genetic engineering ; Genome editing ; Genomes ; Genomics ; Glucose ; GPRC5B ; Insulin-Secreting Cells - cytology ; Insulin-Secreting Cells - metabolism ; Interferon-gamma - metabolism ; Mice ; Neuropeptides - metabolism ; Original Paper ; Palmitic Acid - toxicity ; Phosphorylation ; Plasmids ; Plasmids - genetics ; Plasmids - metabolism ; Proliferation ; Proteins ; Receptors, G-Protein-Coupled - antagonists & inhibitors ; Receptors, G-Protein-Coupled - genetics ; Receptors, G-Protein-Coupled - metabolism ; Signal Transduction ; Smad2 Protein - metabolism ; Smad3 Protein - metabolism ; STAT1 Transcription Factor - metabolism ; Stem cells ; Transforming Growth Factor beta - metabolism ; Type 2 diabetes ; β-cell</subject><ispartof>Cellular physiology and biochemistry, 2018-01, Vol.45 (2), p.656-666</ispartof><rights>2018 The Author(s). Published by S. Karger AG, Basel</rights><rights>2018 The Author(s). Published by S. Karger AG, Basel.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-1b888278e7a912c091beeb51251c503ca89eebb9561d31649c6a7af2600e8a023</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,27640,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29408822$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Atanes, Patricio</creatorcontrib><creatorcontrib>Ruz-Maldonado, Inmaculada</creatorcontrib><creatorcontrib>Hawkes, Ross</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Persaud, Shanta J.</creatorcontrib><creatorcontrib>Amisten, Stefan</creatorcontrib><title>Identifying Signalling Pathways Regulated by GPRC5B in β-Cells by CRISPR-Cas9-Mediated Genome Editing</title><title>Cellular physiology and biochemistry</title><addtitle>Cell Physiol Biochem</addtitle><description>Background/Aims: CRISPR-Cas9, a RNA-guided targeted genome editing tool, has revolutionized genetic engineering by offering the ability to precisely modify DNA. GPRC5B is an orphan receptor belonging to the group C family of G protein-coupled receptors (GPCRs). In this study, we analysed the functional roles of the Gprc5b receptor in MIN6 β-cells using CRISPR-Cas9 and transient over-expression of Gprc5b. Methods: The optimal transfection reagent for use in MIN6 β-cells was determined by analysing efficiency of GFP plasmid delivery by cell sorting. A MIN6 β-cell line in which Gprc5b expression was knocked down (Gprc5b KD) was generated using CRISPR-Cas9 technology. Gprc5b receptor mRNA expression, proliferation, apoptosis, Cignal 45-Pathway Reporter Array signalling and western blot assays were carried out using Gpcr5b KD MIN6 β-cells that had been transiently transfected with different concentrations of mouse Gprc5b plasmid to over-express Gprc5b. Results: JetPRIME® was the best candidate for MIN6 β-cell transfection, providing approximately 30% transfection efficiency. CRISPR-Cas9 technology targeting Gprc5b led to stable knock-down of this receptor in MIN6 β-cells and its re-expression induced proliferation and potentiated cytokine- and palmitate-induced apoptosis. The Cignal 45 Reporter analysis indicated Gprc5b-dependent regulation of apoptotic and proliferative pathways, and western blotting confirmed activation of signalling via TGF-β and IFNγ. Conclusion: This study provides evidence of CRISPR-Cas9 technology being used to down-regulate Gprc5b expression in MIN6 β-cells. This strategy allowed us to identify signalling pathways linking GPRC5B receptor expression to β-cell proliferation and apoptosis.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Apoptosis Regulatory Proteins - metabolism</subject><subject>Base Sequence</subject><subject>Cell culture</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Cloning</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>CRISPR-Cas9</subject><subject>Deoxyribonucleic acid</subject><subject>Diabetes</subject><subject>DNA</subject><subject>Gene Editing</subject><subject>Genetic engineering</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Glucose</subject><subject>GPRC5B</subject><subject>Insulin-Secreting Cells - cytology</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>Interferon-gamma - metabolism</subject><subject>Mice</subject><subject>Neuropeptides - metabolism</subject><subject>Original Paper</subject><subject>Palmitic Acid - toxicity</subject><subject>Phosphorylation</subject><subject>Plasmids</subject><subject>Plasmids - genetics</subject><subject>Plasmids - metabolism</subject><subject>Proliferation</subject><subject>Proteins</subject><subject>Receptors, G-Protein-Coupled - antagonists & inhibitors</subject><subject>Receptors, G-Protein-Coupled - genetics</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>Signal Transduction</subject><subject>Smad2 Protein - metabolism</subject><subject>Smad3 Protein - metabolism</subject><subject>STAT1 Transcription Factor - metabolism</subject><subject>Stem cells</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>Type 2 diabetes</subject><subject>β-cell</subject><issn>1015-8987</issn><issn>1421-9778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M--</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DOA</sourceid><recordid>eNptkU2P0zAQhi0EYj_gwB2hSFzgEPA4cWwf2WgplRZRdeFsOfEkuKRJ106E-rf2h_CbcLalSAj54JnRo3c-XkJeAH0HwNV7SmkuRYwekXPIGaRKCPk4xhR4KpUUZ-QihA2NqVDsKTljKqdSMnZOmqXFfnTN3vVtcuva3nTdHK7M-P2n2Ydkje3UmRFtUu2TxWpd8qvE9cmv-7TErgtztVwvb1frtDRBpZ_Rugd6gf2wxeTaujHqPSNPGtMFfH78L8m3j9dfy0_pzZfFsvxwk9Z5kY0pVDKOJSQKo4DVVEGFWHFgHGpOs9pIFfNK8QJsBkWu6sII07CCUpSGsuySLA-6djAbvfNua_xeD8bph8LgW2386OoONZPxSpZLXmQs3oxW8UkGWW4FlVZg1Hpz0Nr54W7CMOqtC3Vc2vQ4TEGDUgpULooioq__QTfD5OMtg2YAszMZm6m3B6r2Qwgem9OAQPVspD4ZGdlXR8Wp2qI9kX-c-9vyh_Et-hNQrq4OEnpnm0i9_C917PIbtE-o7A</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Atanes, Patricio</creator><creator>Ruz-Maldonado, Inmaculada</creator><creator>Hawkes, Ross</creator><creator>Liu, Bo</creator><creator>Persaud, Shanta J.</creator><creator>Amisten, Stefan</creator><general>S. Karger AG</general><general>Cell Physiol Biochem Press GmbH & Co KG</general><scope>M--</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20180101</creationdate><title>Identifying Signalling Pathways Regulated by GPRC5B in β-Cells by CRISPR-Cas9-Mediated Genome Editing</title><author>Atanes, Patricio ; Ruz-Maldonado, Inmaculada ; Hawkes, Ross ; Liu, Bo ; Persaud, Shanta J. ; Amisten, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-1b888278e7a912c091beeb51251c503ca89eebb9561d31649c6a7af2600e8a023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Apoptosis Regulatory Proteins - metabolism</topic><topic>Base Sequence</topic><topic>Cell culture</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Cloning</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>CRISPR-Cas9</topic><topic>Deoxyribonucleic acid</topic><topic>Diabetes</topic><topic>DNA</topic><topic>Gene Editing</topic><topic>Genetic engineering</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Glucose</topic><topic>GPRC5B</topic><topic>Insulin-Secreting Cells - cytology</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>Interferon-gamma - metabolism</topic><topic>Mice</topic><topic>Neuropeptides - metabolism</topic><topic>Original Paper</topic><topic>Palmitic Acid - toxicity</topic><topic>Phosphorylation</topic><topic>Plasmids</topic><topic>Plasmids - genetics</topic><topic>Plasmids - metabolism</topic><topic>Proliferation</topic><topic>Proteins</topic><topic>Receptors, G-Protein-Coupled - antagonists & inhibitors</topic><topic>Receptors, G-Protein-Coupled - genetics</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>Signal Transduction</topic><topic>Smad2 Protein - metabolism</topic><topic>Smad3 Protein - metabolism</topic><topic>STAT1 Transcription Factor - metabolism</topic><topic>Stem cells</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>Type 2 diabetes</topic><topic>β-cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atanes, Patricio</creatorcontrib><creatorcontrib>Ruz-Maldonado, Inmaculada</creatorcontrib><creatorcontrib>Hawkes, Ross</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Persaud, Shanta J.</creatorcontrib><creatorcontrib>Amisten, Stefan</creatorcontrib><collection>Karger Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cellular physiology and biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atanes, Patricio</au><au>Ruz-Maldonado, Inmaculada</au><au>Hawkes, Ross</au><au>Liu, Bo</au><au>Persaud, Shanta J.</au><au>Amisten, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying Signalling Pathways Regulated by GPRC5B in β-Cells by CRISPR-Cas9-Mediated Genome Editing</atitle><jtitle>Cellular physiology and biochemistry</jtitle><addtitle>Cell Physiol Biochem</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>45</volume><issue>2</issue><spage>656</spage><epage>666</epage><pages>656-666</pages><issn>1015-8987</issn><eissn>1421-9778</eissn><abstract>Background/Aims: CRISPR-Cas9, a RNA-guided targeted genome editing tool, has revolutionized genetic engineering by offering the ability to precisely modify DNA. GPRC5B is an orphan receptor belonging to the group C family of G protein-coupled receptors (GPCRs). In this study, we analysed the functional roles of the Gprc5b receptor in MIN6 β-cells using CRISPR-Cas9 and transient over-expression of Gprc5b. Methods: The optimal transfection reagent for use in MIN6 β-cells was determined by analysing efficiency of GFP plasmid delivery by cell sorting. A MIN6 β-cell line in which Gprc5b expression was knocked down (Gprc5b KD) was generated using CRISPR-Cas9 technology. Gprc5b receptor mRNA expression, proliferation, apoptosis, Cignal 45-Pathway Reporter Array signalling and western blot assays were carried out using Gpcr5b KD MIN6 β-cells that had been transiently transfected with different concentrations of mouse Gprc5b plasmid to over-express Gprc5b. Results: JetPRIME® was the best candidate for MIN6 β-cell transfection, providing approximately 30% transfection efficiency. CRISPR-Cas9 technology targeting Gprc5b led to stable knock-down of this receptor in MIN6 β-cells and its re-expression induced proliferation and potentiated cytokine- and palmitate-induced apoptosis. The Cignal 45 Reporter analysis indicated Gprc5b-dependent regulation of apoptotic and proliferative pathways, and western blotting confirmed activation of signalling via TGF-β and IFNγ. Conclusion: This study provides evidence of CRISPR-Cas9 technology being used to down-regulate Gprc5b expression in MIN6 β-cells. This strategy allowed us to identify signalling pathways linking GPRC5B receptor expression to β-cell proliferation and apoptosis.</abstract><cop>Basel, Switzerland</cop><pub>S. Karger AG</pub><pmid>29408822</pmid><doi>10.1159/000487159</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1015-8987 |
ispartof | Cellular physiology and biochemistry, 2018-01, Vol.45 (2), p.656-666 |
issn | 1015-8987 1421-9778 |
language | eng |
recordid | cdi_crossref_primary_10_1159_000487159 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Karger Open Access; EZB-FREE-00999 freely available EZB journals |
subjects | Animals Apoptosis Apoptosis - drug effects Apoptosis Regulatory Proteins - metabolism Base Sequence Cell culture Cell growth Cell Line, Tumor Cell Proliferation Cloning CRISPR CRISPR-Cas Systems - genetics CRISPR-Cas9 Deoxyribonucleic acid Diabetes DNA Gene Editing Genetic engineering Genome editing Genomes Genomics Glucose GPRC5B Insulin-Secreting Cells - cytology Insulin-Secreting Cells - metabolism Interferon-gamma - metabolism Mice Neuropeptides - metabolism Original Paper Palmitic Acid - toxicity Phosphorylation Plasmids Plasmids - genetics Plasmids - metabolism Proliferation Proteins Receptors, G-Protein-Coupled - antagonists & inhibitors Receptors, G-Protein-Coupled - genetics Receptors, G-Protein-Coupled - metabolism Signal Transduction Smad2 Protein - metabolism Smad3 Protein - metabolism STAT1 Transcription Factor - metabolism Stem cells Transforming Growth Factor beta - metabolism Type 2 diabetes β-cell |
title | Identifying Signalling Pathways Regulated by GPRC5B in β-Cells by CRISPR-Cas9-Mediated Genome Editing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20Signalling%20Pathways%20Regulated%20by%20GPRC5B%20in%20%CE%B2-Cells%20by%20CRISPR-Cas9-Mediated%20Genome%20Editing&rft.jtitle=Cellular%20physiology%20and%20biochemistry&rft.au=Atanes,%20Patricio&rft.date=2018-01-01&rft.volume=45&rft.issue=2&rft.spage=656&rft.epage=666&rft.pages=656-666&rft.issn=1015-8987&rft.eissn=1421-9778&rft_id=info:doi/10.1159/000487159&rft_dat=%3Cproquest_cross%3E2117159326%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117159326&rft_id=info:pmid/29408822&rft_doaj_id=oai_doaj_org_article_28977d5856324210b0b082134d708d7e&rfr_iscdi=true |