Biochemical and Pharmacokinetic Properties of PEGylated Cystathionine γ-Lyase from Aspergillus carneus KF723837

Cystathionine γ-lyase (CGL) was purified to its electrophoretic homogeneity from Aspergillus carneus by various chromatographic approaches. The purified enzyme has four identical subunits of 52 kDa based on SDS and native PAGE analyses. To improve its structural stability, purified CGL was modified...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular microbiology and biotechnology 2015-01, Vol.25 (5), p.301-310
Hauptverfasser: El-Sayed, Ashraf S.A., Yassin, Marwa A., Khalaf, Salwa A., El-Batrik, Mohamed, Ali, Gul Shad, Esener, Sadik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 310
container_issue 5
container_start_page 301
container_title Journal of molecular microbiology and biotechnology
container_volume 25
creator El-Sayed, Ashraf S.A.
Yassin, Marwa A.
Khalaf, Salwa A.
El-Batrik, Mohamed
Ali, Gul Shad
Esener, Sadik
description Cystathionine γ-lyase (CGL) was purified to its electrophoretic homogeneity from Aspergillus carneus by various chromatographic approaches. The purified enzyme has four identical subunits of 52 kDa based on SDS and native PAGE analyses. To improve its structural stability, purified CGL was modified by covalent binding to polyethylene glycol moieties. The specific activity of free-CGL and PEG-CGL was 59.71 and 48.71 U/mg, respectively, with a PEGylation yield of 81.5 and 70.7% modification of surface ε-amino groups. Free- and modified CGL have the same pattern of pH stability (8.0-9.0). At 50°C, the thermal stability [half-life time (T 1/2 )] of PEG-CGL was increased by 40% in comparison to free-CGL. The activity of CGL was completely inhibited by hydroxylamine and Hg +2 , with no effect by EDTA. Free-CGL (0.04 m M -1 s -1 ) and PEG-CGL (0.03 m M -1 s -1 ) have a similar catalytic efficiency to L -cystathionine as a substrate. The inhibition constant values of propargylglycine were 0.31 and 0.52 µ M for the free- and PEG-CGL, respectively. By in vitro proteolysis, PEG-CGL retains >50% of its initial activity compared to
doi_str_mv 10.1159/000437331
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1159_000437331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1727437774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-d355e2285da66d3e94b6c4f79c1a43b02fca2628d45d27f06df64ff5a42abc0b3</originalsourceid><addsrcrecordid>eNo9kL1OwzAUhS0Egqp0YEfIIwwB_yR2O5YKCqISHWCObvzTGpK42MnQ5-I9eCaMWqornXOH75zhIHRByS2lxeSOEJJzyTk9QgMmJM9okuPDL4ozNIrxI2Esp2wsi1N0xgSnIt0Abe6dV2vTOAU1hlbj5RpCA8p_utZ0TuFl8BsTOmci9hYvH-bbGjqj8WwbO-jWzrcJxD_f2WIL0WAbfIOnMUVWrq77iBWE1iR_eZSMj7k8RycW6mhGex-i98eHt9lTtnidP8-mi0xxIrpM86IwjI0LDUJobiZ5JVRu5URRyHlFmFXABBvrvNBMWiK0Fbm1BeQMKkUqPkTXu95N8F-9iV3ZuKhMXUNrfB9LKplMu8kkQ3SzQ1XwMQZjy01wDYRtSUn5t3F52DixV_vavmqMPpD_iybgcgd8QliZcAD2-V982YAH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1727437774</pqid></control><display><type>article</type><title>Biochemical and Pharmacokinetic Properties of PEGylated Cystathionine γ-Lyase from Aspergillus carneus KF723837</title><source>MEDLINE</source><source>Karger Journals</source><source>Alma/SFX Local Collection</source><creator>El-Sayed, Ashraf S.A. ; Yassin, Marwa A. ; Khalaf, Salwa A. ; El-Batrik, Mohamed ; Ali, Gul Shad ; Esener, Sadik</creator><creatorcontrib>El-Sayed, Ashraf S.A. ; Yassin, Marwa A. ; Khalaf, Salwa A. ; El-Batrik, Mohamed ; Ali, Gul Shad ; Esener, Sadik</creatorcontrib><description>Cystathionine γ-lyase (CGL) was purified to its electrophoretic homogeneity from Aspergillus carneus by various chromatographic approaches. The purified enzyme has four identical subunits of 52 kDa based on SDS and native PAGE analyses. To improve its structural stability, purified CGL was modified by covalent binding to polyethylene glycol moieties. The specific activity of free-CGL and PEG-CGL was 59.71 and 48.71 U/mg, respectively, with a PEGylation yield of 81.5 and 70.7% modification of surface ε-amino groups. Free- and modified CGL have the same pattern of pH stability (8.0-9.0). At 50°C, the thermal stability [half-life time (T 1/2 )] of PEG-CGL was increased by 40% in comparison to free-CGL. The activity of CGL was completely inhibited by hydroxylamine and Hg +2 , with no effect by EDTA. Free-CGL (0.04 m M -1 s -1 ) and PEG-CGL (0.03 m M -1 s -1 ) have a similar catalytic efficiency to L -cystathionine as a substrate. The inhibition constant values of propargylglycine were 0.31 and 0.52 µ M for the free- and PEG-CGL, respectively. By in vitro proteolysis, PEG-CGL retains &gt;50% of its initial activity compared to &lt;10% of the free-CGL for acid protease for 30 min. From in vivo pharmacokinetics in New Zealand white rabbits, the T 1/2 was 19.1 and 28.9 h for the Holo free-CGL and PEG-CGL, respectively, ensuring the role of PEGylation on shielding the CGL surface from proteolytic attack, reducing its antigenicity, and stabilizing its internal Schiff base. By external infusion of pyridoxal 5′-phosphate (10 µ M ), the T 1/2 of free- and PEG-CGL was prolonged to 24 and 33 h, respectively, so dissociation of pyridoxal 5′-phosphate was one of the main causes of loss of enzyme activity. The biochemical and hematological responses of rabbits to free- and PEG-CGL were assessed, with relative similarity to the negative control, confirming the nil toxicity of enzymes. The titer of IgG was duplicated in response to free- versus PEG-CGL after 45 days. To the best of our knowledge, this is the first report concerned with purification and PEGylation of CGL from fungi, with higher affinity for L -cystathionine. With further molecular studies, CGL will be a promising enzyme against various cardiovascular diseases and antioxidant deficiency, as well as for generation of a neurotransmitter (H 2 S).</description><identifier>ISSN: 2673-1665</identifier><identifier>EISSN: 2673-1673</identifier><identifier>EISSN: 1660-2412</identifier><identifier>DOI: 10.1159/000437331</identifier><identifier>PMID: 26316161</identifier><language>eng</language><publisher>Basel, Switzerland</publisher><subject>Animals ; Aspergillus - enzymology ; Cystathionine - metabolism ; Cystathionine gamma-Lyase - antagonists &amp; inhibitors ; Cystathionine gamma-Lyase - chemistry ; Cystathionine gamma-Lyase - isolation &amp; purification ; Cystathionine gamma-Lyase - pharmacokinetics ; Enzyme Stability ; Enzymes, Immobilized - chemistry ; Hydrogen-Ion Concentration ; Kinetics ; Polyethylene Glycols - chemistry ; Rabbits ; Research Article ; Substrate Specificity</subject><ispartof>Journal of molecular microbiology and biotechnology, 2015-01, Vol.25 (5), p.301-310</ispartof><rights>2015 S. Karger AG, Basel</rights><rights>2015 S. Karger AG, Basel.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-d355e2285da66d3e94b6c4f79c1a43b02fca2628d45d27f06df64ff5a42abc0b3</citedby><cites>FETCH-LOGICAL-c306t-d355e2285da66d3e94b6c4f79c1a43b02fca2628d45d27f06df64ff5a42abc0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2429,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26316161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>El-Sayed, Ashraf S.A.</creatorcontrib><creatorcontrib>Yassin, Marwa A.</creatorcontrib><creatorcontrib>Khalaf, Salwa A.</creatorcontrib><creatorcontrib>El-Batrik, Mohamed</creatorcontrib><creatorcontrib>Ali, Gul Shad</creatorcontrib><creatorcontrib>Esener, Sadik</creatorcontrib><title>Biochemical and Pharmacokinetic Properties of PEGylated Cystathionine γ-Lyase from Aspergillus carneus KF723837</title><title>Journal of molecular microbiology and biotechnology</title><addtitle>Microb Physiol</addtitle><description>Cystathionine γ-lyase (CGL) was purified to its electrophoretic homogeneity from Aspergillus carneus by various chromatographic approaches. The purified enzyme has four identical subunits of 52 kDa based on SDS and native PAGE analyses. To improve its structural stability, purified CGL was modified by covalent binding to polyethylene glycol moieties. The specific activity of free-CGL and PEG-CGL was 59.71 and 48.71 U/mg, respectively, with a PEGylation yield of 81.5 and 70.7% modification of surface ε-amino groups. Free- and modified CGL have the same pattern of pH stability (8.0-9.0). At 50°C, the thermal stability [half-life time (T 1/2 )] of PEG-CGL was increased by 40% in comparison to free-CGL. The activity of CGL was completely inhibited by hydroxylamine and Hg +2 , with no effect by EDTA. Free-CGL (0.04 m M -1 s -1 ) and PEG-CGL (0.03 m M -1 s -1 ) have a similar catalytic efficiency to L -cystathionine as a substrate. The inhibition constant values of propargylglycine were 0.31 and 0.52 µ M for the free- and PEG-CGL, respectively. By in vitro proteolysis, PEG-CGL retains &gt;50% of its initial activity compared to &lt;10% of the free-CGL for acid protease for 30 min. From in vivo pharmacokinetics in New Zealand white rabbits, the T 1/2 was 19.1 and 28.9 h for the Holo free-CGL and PEG-CGL, respectively, ensuring the role of PEGylation on shielding the CGL surface from proteolytic attack, reducing its antigenicity, and stabilizing its internal Schiff base. By external infusion of pyridoxal 5′-phosphate (10 µ M ), the T 1/2 of free- and PEG-CGL was prolonged to 24 and 33 h, respectively, so dissociation of pyridoxal 5′-phosphate was one of the main causes of loss of enzyme activity. The biochemical and hematological responses of rabbits to free- and PEG-CGL were assessed, with relative similarity to the negative control, confirming the nil toxicity of enzymes. The titer of IgG was duplicated in response to free- versus PEG-CGL after 45 days. To the best of our knowledge, this is the first report concerned with purification and PEGylation of CGL from fungi, with higher affinity for L -cystathionine. With further molecular studies, CGL will be a promising enzyme against various cardiovascular diseases and antioxidant deficiency, as well as for generation of a neurotransmitter (H 2 S).</description><subject>Animals</subject><subject>Aspergillus - enzymology</subject><subject>Cystathionine - metabolism</subject><subject>Cystathionine gamma-Lyase - antagonists &amp; inhibitors</subject><subject>Cystathionine gamma-Lyase - chemistry</subject><subject>Cystathionine gamma-Lyase - isolation &amp; purification</subject><subject>Cystathionine gamma-Lyase - pharmacokinetics</subject><subject>Enzyme Stability</subject><subject>Enzymes, Immobilized - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kinetics</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Rabbits</subject><subject>Research Article</subject><subject>Substrate Specificity</subject><issn>2673-1665</issn><issn>2673-1673</issn><issn>1660-2412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kL1OwzAUhS0Egqp0YEfIIwwB_yR2O5YKCqISHWCObvzTGpK42MnQ5-I9eCaMWqornXOH75zhIHRByS2lxeSOEJJzyTk9QgMmJM9okuPDL4ozNIrxI2Esp2wsi1N0xgSnIt0Abe6dV2vTOAU1hlbj5RpCA8p_utZ0TuFl8BsTOmci9hYvH-bbGjqj8WwbO-jWzrcJxD_f2WIL0WAbfIOnMUVWrq77iBWE1iR_eZSMj7k8RycW6mhGex-i98eHt9lTtnidP8-mi0xxIrpM86IwjI0LDUJobiZ5JVRu5URRyHlFmFXABBvrvNBMWiK0Fbm1BeQMKkUqPkTXu95N8F-9iV3ZuKhMXUNrfB9LKplMu8kkQ3SzQ1XwMQZjy01wDYRtSUn5t3F52DixV_vavmqMPpD_iybgcgd8QliZcAD2-V982YAH</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>El-Sayed, Ashraf S.A.</creator><creator>Yassin, Marwa A.</creator><creator>Khalaf, Salwa A.</creator><creator>El-Batrik, Mohamed</creator><creator>Ali, Gul Shad</creator><creator>Esener, Sadik</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150101</creationdate><title>Biochemical and Pharmacokinetic Properties of PEGylated Cystathionine γ-Lyase from Aspergillus carneus KF723837</title><author>El-Sayed, Ashraf S.A. ; Yassin, Marwa A. ; Khalaf, Salwa A. ; El-Batrik, Mohamed ; Ali, Gul Shad ; Esener, Sadik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-d355e2285da66d3e94b6c4f79c1a43b02fca2628d45d27f06df64ff5a42abc0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Aspergillus - enzymology</topic><topic>Cystathionine - metabolism</topic><topic>Cystathionine gamma-Lyase - antagonists &amp; inhibitors</topic><topic>Cystathionine gamma-Lyase - chemistry</topic><topic>Cystathionine gamma-Lyase - isolation &amp; purification</topic><topic>Cystathionine gamma-Lyase - pharmacokinetics</topic><topic>Enzyme Stability</topic><topic>Enzymes, Immobilized - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kinetics</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Rabbits</topic><topic>Research Article</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El-Sayed, Ashraf S.A.</creatorcontrib><creatorcontrib>Yassin, Marwa A.</creatorcontrib><creatorcontrib>Khalaf, Salwa A.</creatorcontrib><creatorcontrib>El-Batrik, Mohamed</creatorcontrib><creatorcontrib>Ali, Gul Shad</creatorcontrib><creatorcontrib>Esener, Sadik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-Sayed, Ashraf S.A.</au><au>Yassin, Marwa A.</au><au>Khalaf, Salwa A.</au><au>El-Batrik, Mohamed</au><au>Ali, Gul Shad</au><au>Esener, Sadik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biochemical and Pharmacokinetic Properties of PEGylated Cystathionine γ-Lyase from Aspergillus carneus KF723837</atitle><jtitle>Journal of molecular microbiology and biotechnology</jtitle><addtitle>Microb Physiol</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>25</volume><issue>5</issue><spage>301</spage><epage>310</epage><pages>301-310</pages><issn>2673-1665</issn><eissn>2673-1673</eissn><eissn>1660-2412</eissn><abstract>Cystathionine γ-lyase (CGL) was purified to its electrophoretic homogeneity from Aspergillus carneus by various chromatographic approaches. The purified enzyme has four identical subunits of 52 kDa based on SDS and native PAGE analyses. To improve its structural stability, purified CGL was modified by covalent binding to polyethylene glycol moieties. The specific activity of free-CGL and PEG-CGL was 59.71 and 48.71 U/mg, respectively, with a PEGylation yield of 81.5 and 70.7% modification of surface ε-amino groups. Free- and modified CGL have the same pattern of pH stability (8.0-9.0). At 50°C, the thermal stability [half-life time (T 1/2 )] of PEG-CGL was increased by 40% in comparison to free-CGL. The activity of CGL was completely inhibited by hydroxylamine and Hg +2 , with no effect by EDTA. Free-CGL (0.04 m M -1 s -1 ) and PEG-CGL (0.03 m M -1 s -1 ) have a similar catalytic efficiency to L -cystathionine as a substrate. The inhibition constant values of propargylglycine were 0.31 and 0.52 µ M for the free- and PEG-CGL, respectively. By in vitro proteolysis, PEG-CGL retains &gt;50% of its initial activity compared to &lt;10% of the free-CGL for acid protease for 30 min. From in vivo pharmacokinetics in New Zealand white rabbits, the T 1/2 was 19.1 and 28.9 h for the Holo free-CGL and PEG-CGL, respectively, ensuring the role of PEGylation on shielding the CGL surface from proteolytic attack, reducing its antigenicity, and stabilizing its internal Schiff base. By external infusion of pyridoxal 5′-phosphate (10 µ M ), the T 1/2 of free- and PEG-CGL was prolonged to 24 and 33 h, respectively, so dissociation of pyridoxal 5′-phosphate was one of the main causes of loss of enzyme activity. The biochemical and hematological responses of rabbits to free- and PEG-CGL were assessed, with relative similarity to the negative control, confirming the nil toxicity of enzymes. The titer of IgG was duplicated in response to free- versus PEG-CGL after 45 days. To the best of our knowledge, this is the first report concerned with purification and PEGylation of CGL from fungi, with higher affinity for L -cystathionine. With further molecular studies, CGL will be a promising enzyme against various cardiovascular diseases and antioxidant deficiency, as well as for generation of a neurotransmitter (H 2 S).</abstract><cop>Basel, Switzerland</cop><pmid>26316161</pmid><doi>10.1159/000437331</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2673-1665
ispartof Journal of molecular microbiology and biotechnology, 2015-01, Vol.25 (5), p.301-310
issn 2673-1665
2673-1673
1660-2412
language eng
recordid cdi_crossref_primary_10_1159_000437331
source MEDLINE; Karger Journals; Alma/SFX Local Collection
subjects Animals
Aspergillus - enzymology
Cystathionine - metabolism
Cystathionine gamma-Lyase - antagonists & inhibitors
Cystathionine gamma-Lyase - chemistry
Cystathionine gamma-Lyase - isolation & purification
Cystathionine gamma-Lyase - pharmacokinetics
Enzyme Stability
Enzymes, Immobilized - chemistry
Hydrogen-Ion Concentration
Kinetics
Polyethylene Glycols - chemistry
Rabbits
Research Article
Substrate Specificity
title Biochemical and Pharmacokinetic Properties of PEGylated Cystathionine γ-Lyase from Aspergillus carneus KF723837
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A30%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biochemical%20and%20Pharmacokinetic%20Properties%20of%20PEGylated%20Cystathionine%20%CE%B3-Lyase%20from%20Aspergillus%20carneus%20KF723837&rft.jtitle=Journal%20of%20molecular%20microbiology%20and%20biotechnology&rft.au=El-Sayed,%20Ashraf%20S.A.&rft.date=2015-01-01&rft.volume=25&rft.issue=5&rft.spage=301&rft.epage=310&rft.pages=301-310&rft.issn=2673-1665&rft.eissn=2673-1673&rft_id=info:doi/10.1159/000437331&rft_dat=%3Cproquest_cross%3E1727437774%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1727437774&rft_id=info:pmid/26316161&rfr_iscdi=true