The Role of MicroRNA-381 in Chondrogenesis and Interleukin-1-β Induced Chondrocyte Responses
Aim: The molecular pathways regulating cartilage degradation are unclear. miR-381 was identified as a putative regulator of chondrogenesis related genes. Here, we examined its role in chondrogenesis and osteoarthritic cartilage degeneration. Methods: miR-381 expression was assessed in vitro in respo...
Gespeichert in:
Veröffentlicht in: | Cellular physiology and biochemistry 2015-01, Vol.36 (5), p.1753-1766 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aim: The molecular pathways regulating cartilage degradation are unclear. miR-381 was identified as a putative regulator of chondrogenesis related genes. Here, we examined its role in chondrogenesis and osteoarthritic cartilage degeneration. Methods: miR-381 expression was assessed in vitro in response to IL-1β stimulation in primary human (PHC) and mouse (PMC) chondrocytes, and ATDC5 derived chondrocytes; and in vivo in mouse embryos and human osteoarthritic cartilage. The effects of miR-381 on chondrogenesis and NF-kB signaling were assessed using a synthetic RNA mimic or inhibitor and luciferase assay, respectively. Upstream regulators of miR381 were probed using siRNA or overexpression plasmids for Sox9 and Runx2. Results: miR-381 expression was elevated in chondrogenic and hypertrophic ATDC5 cells. miR-381 was induced in vitro by IL-1β in ATDC5 cells, PMCs, and PHCs, and was expressed in areas of cartilage degradation or absorption in vivo. Overexpression of Runx2 or Sox9 increased miR-381 expression in ATDC5 cells. miR-381 suppressed expression of collagen, type II, alpha 1, and enhanced expression of metalloproteinase-13 (MMP-13), but did not regulate NFKBIA and NKRF activity. Conclusion: miR-381 was highly expressed during chondrogenesis and in arthritic cartilage. It may contribute to absorption of the cartilage matrix by repressing type II collagen and inducing MMP-13. |
---|---|
ISSN: | 1015-8987 1421-9778 |
DOI: | 10.1159/000430148 |