Spatial analysis and forecasting map of diarrhea incidents in Banjar District

Diarrhea is a common disease in the community and can be fatal if treatment is delayed. Banjar District has recorded the highest prevalence of diarrhea in South Kalimantan for the past few years, making it one of the causes of death in toddlers. This study aims to conduct spatial analysis using Mora...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of public health science 2025-03, Vol.14 (1), p.277
Hauptverfasser: Fakhrizal, Deni, Suhartono, Eko, Prihartini, Nopi Stiyati, Noor, Meitria Syahdatina, Syauqiah, Isna
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 277
container_title International journal of public health science
container_volume 14
creator Fakhrizal, Deni
Suhartono, Eko
Prihartini, Nopi Stiyati
Noor, Meitria Syahdatina
Syauqiah, Isna
description Diarrhea is a common disease in the community and can be fatal if treatment is delayed. Banjar District has recorded the highest prevalence of diarrhea in South Kalimantan for the past few years, making it one of the causes of death in toddlers. This study aims to conduct spatial analysis using Moran's I index and local indicators of spatial association (LISA). Diarrhea case predictions are made using the multiplicative decomposition time series method. The data used in this study are diarrhea case data from 20 sub-districts in Banjar District during the period 2016-2022. Although no global autocorrelation was found in Banjar District, there were two sub-districts that showed local autocorrelation. The prediction results show a decreasing trend in diarrhea cases in most sub-districts. Health interventions can be focused on areas with high risk, such as hotspot areas and areas predicted not to experience a decrease in diarrhea cases.
doi_str_mv 10.11591/ijphs.v14i1.24682
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_11591_ijphs_v14i1_24682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_11591_ijphs_v14i1_24682</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_11591_ijphs_v14i1_246823</originalsourceid><addsrcrecordid>eNqdzsFqwkAQxvFFWqioL9DTvkDizmYN8apt8eJJ78uQbOqEuAkzi-DbNwSfoKfvf_ngp9QnmBxgt4ctdeNN8gc4gty6srILtbSlNZkDW75NbXc2qypTfqiNSGeMgcLB3hVLdb6MmAh7jRH7p5BM0eh24FCjJIq_-o6jHlrdEDLfAmqKNTUhJplKHzB2yPqLJDHVaa3eW-wlbF67Uvbn-3o8ZTUPIhxaPzLdkZ8ejJ_tfrb72e5ne_Gv0x8OzlBt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spatial analysis and forecasting map of diarrhea incidents in Banjar District</title><source>EZB Free E-Journals</source><creator>Fakhrizal, Deni ; Suhartono, Eko ; Prihartini, Nopi Stiyati ; Noor, Meitria Syahdatina ; Syauqiah, Isna</creator><creatorcontrib>Fakhrizal, Deni ; Suhartono, Eko ; Prihartini, Nopi Stiyati ; Noor, Meitria Syahdatina ; Syauqiah, Isna</creatorcontrib><description>Diarrhea is a common disease in the community and can be fatal if treatment is delayed. Banjar District has recorded the highest prevalence of diarrhea in South Kalimantan for the past few years, making it one of the causes of death in toddlers. This study aims to conduct spatial analysis using Moran's I index and local indicators of spatial association (LISA). Diarrhea case predictions are made using the multiplicative decomposition time series method. The data used in this study are diarrhea case data from 20 sub-districts in Banjar District during the period 2016-2022. Although no global autocorrelation was found in Banjar District, there were two sub-districts that showed local autocorrelation. The prediction results show a decreasing trend in diarrhea cases in most sub-districts. Health interventions can be focused on areas with high risk, such as hotspot areas and areas predicted not to experience a decrease in diarrhea cases.</description><identifier>ISSN: 2252-8806</identifier><identifier>EISSN: 2620-4126</identifier><identifier>DOI: 10.11591/ijphs.v14i1.24682</identifier><language>eng</language><ispartof>International journal of public health science, 2025-03, Vol.14 (1), p.277</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9736-2758 ; 0000-0001-8406-6055 ; 0000-0002-1239-6335 ; 0000-0001-7544-7497 ; 0000-0003-4385-7621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fakhrizal, Deni</creatorcontrib><creatorcontrib>Suhartono, Eko</creatorcontrib><creatorcontrib>Prihartini, Nopi Stiyati</creatorcontrib><creatorcontrib>Noor, Meitria Syahdatina</creatorcontrib><creatorcontrib>Syauqiah, Isna</creatorcontrib><title>Spatial analysis and forecasting map of diarrhea incidents in Banjar District</title><title>International journal of public health science</title><description>Diarrhea is a common disease in the community and can be fatal if treatment is delayed. Banjar District has recorded the highest prevalence of diarrhea in South Kalimantan for the past few years, making it one of the causes of death in toddlers. This study aims to conduct spatial analysis using Moran's I index and local indicators of spatial association (LISA). Diarrhea case predictions are made using the multiplicative decomposition time series method. The data used in this study are diarrhea case data from 20 sub-districts in Banjar District during the period 2016-2022. Although no global autocorrelation was found in Banjar District, there were two sub-districts that showed local autocorrelation. The prediction results show a decreasing trend in diarrhea cases in most sub-districts. Health interventions can be focused on areas with high risk, such as hotspot areas and areas predicted not to experience a decrease in diarrhea cases.</description><issn>2252-8806</issn><issn>2620-4126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqdzsFqwkAQxvFFWqioL9DTvkDizmYN8apt8eJJ78uQbOqEuAkzi-DbNwSfoKfvf_ngp9QnmBxgt4ctdeNN8gc4gty6srILtbSlNZkDW75NbXc2qypTfqiNSGeMgcLB3hVLdb6MmAh7jRH7p5BM0eh24FCjJIq_-o6jHlrdEDLfAmqKNTUhJplKHzB2yPqLJDHVaa3eW-wlbF67Uvbn-3o8ZTUPIhxaPzLdkZ8ejJ_tfrb72e5ne_Gv0x8OzlBt</recordid><startdate>20250301</startdate><enddate>20250301</enddate><creator>Fakhrizal, Deni</creator><creator>Suhartono, Eko</creator><creator>Prihartini, Nopi Stiyati</creator><creator>Noor, Meitria Syahdatina</creator><creator>Syauqiah, Isna</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9736-2758</orcidid><orcidid>https://orcid.org/0000-0001-8406-6055</orcidid><orcidid>https://orcid.org/0000-0002-1239-6335</orcidid><orcidid>https://orcid.org/0000-0001-7544-7497</orcidid><orcidid>https://orcid.org/0000-0003-4385-7621</orcidid></search><sort><creationdate>20250301</creationdate><title>Spatial analysis and forecasting map of diarrhea incidents in Banjar District</title><author>Fakhrizal, Deni ; Suhartono, Eko ; Prihartini, Nopi Stiyati ; Noor, Meitria Syahdatina ; Syauqiah, Isna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_11591_ijphs_v14i1_246823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Fakhrizal, Deni</creatorcontrib><creatorcontrib>Suhartono, Eko</creatorcontrib><creatorcontrib>Prihartini, Nopi Stiyati</creatorcontrib><creatorcontrib>Noor, Meitria Syahdatina</creatorcontrib><creatorcontrib>Syauqiah, Isna</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of public health science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fakhrizal, Deni</au><au>Suhartono, Eko</au><au>Prihartini, Nopi Stiyati</au><au>Noor, Meitria Syahdatina</au><au>Syauqiah, Isna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial analysis and forecasting map of diarrhea incidents in Banjar District</atitle><jtitle>International journal of public health science</jtitle><date>2025-03-01</date><risdate>2025</risdate><volume>14</volume><issue>1</issue><spage>277</spage><pages>277-</pages><issn>2252-8806</issn><eissn>2620-4126</eissn><abstract>Diarrhea is a common disease in the community and can be fatal if treatment is delayed. Banjar District has recorded the highest prevalence of diarrhea in South Kalimantan for the past few years, making it one of the causes of death in toddlers. This study aims to conduct spatial analysis using Moran's I index and local indicators of spatial association (LISA). Diarrhea case predictions are made using the multiplicative decomposition time series method. The data used in this study are diarrhea case data from 20 sub-districts in Banjar District during the period 2016-2022. Although no global autocorrelation was found in Banjar District, there were two sub-districts that showed local autocorrelation. The prediction results show a decreasing trend in diarrhea cases in most sub-districts. Health interventions can be focused on areas with high risk, such as hotspot areas and areas predicted not to experience a decrease in diarrhea cases.</abstract><doi>10.11591/ijphs.v14i1.24682</doi><orcidid>https://orcid.org/0000-0002-9736-2758</orcidid><orcidid>https://orcid.org/0000-0001-8406-6055</orcidid><orcidid>https://orcid.org/0000-0002-1239-6335</orcidid><orcidid>https://orcid.org/0000-0001-7544-7497</orcidid><orcidid>https://orcid.org/0000-0003-4385-7621</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2252-8806
ispartof International journal of public health science, 2025-03, Vol.14 (1), p.277
issn 2252-8806
2620-4126
language eng
recordid cdi_crossref_primary_10_11591_ijphs_v14i1_24682
source EZB Free E-Journals
title Spatial analysis and forecasting map of diarrhea incidents in Banjar District
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T14%3A19%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20analysis%20and%20forecasting%20map%20of%20diarrhea%20incidents%20in%20Banjar%20District&rft.jtitle=International%20journal%20of%20public%20health%20science&rft.au=Fakhrizal,%20Deni&rft.date=2025-03-01&rft.volume=14&rft.issue=1&rft.spage=277&rft.pages=277-&rft.issn=2252-8806&rft.eissn=2620-4126&rft_id=info:doi/10.11591/ijphs.v14i1.24682&rft_dat=%3Ccrossref%3E10_11591_ijphs_v14i1_24682%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true