Spatial analysis and forecasting map of diarrhea incidents in Banjar District
Diarrhea is a common disease in the community and can be fatal if treatment is delayed. Banjar District has recorded the highest prevalence of diarrhea in South Kalimantan for the past few years, making it one of the causes of death in toddlers. This study aims to conduct spatial analysis using Mora...
Gespeichert in:
Veröffentlicht in: | International journal of public health science 2025-03, Vol.14 (1), p.277 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 277 |
container_title | International journal of public health science |
container_volume | 14 |
creator | Fakhrizal, Deni Suhartono, Eko Prihartini, Nopi Stiyati Noor, Meitria Syahdatina Syauqiah, Isna |
description | Diarrhea is a common disease in the community and can be fatal if treatment is delayed. Banjar District has recorded the highest prevalence of diarrhea in South Kalimantan for the past few years, making it one of the causes of death in toddlers. This study aims to conduct spatial analysis using Moran's I index and local indicators of spatial association (LISA). Diarrhea case predictions are made using the multiplicative decomposition time series method. The data used in this study are diarrhea case data from 20 sub-districts in Banjar District during the period 2016-2022. Although no global autocorrelation was found in Banjar District, there were two sub-districts that showed local autocorrelation. The prediction results show a decreasing trend in diarrhea cases in most sub-districts. Health interventions can be focused on areas with high risk, such as hotspot areas and areas predicted not to experience a decrease in diarrhea cases. |
doi_str_mv | 10.11591/ijphs.v14i1.24682 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_11591_ijphs_v14i1_24682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_11591_ijphs_v14i1_24682</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_11591_ijphs_v14i1_246823</originalsourceid><addsrcrecordid>eNqdzsFqwkAQxvFFWqioL9DTvkDizmYN8apt8eJJ78uQbOqEuAkzi-DbNwSfoKfvf_ngp9QnmBxgt4ctdeNN8gc4gty6srILtbSlNZkDW75NbXc2qypTfqiNSGeMgcLB3hVLdb6MmAh7jRH7p5BM0eh24FCjJIq_-o6jHlrdEDLfAmqKNTUhJplKHzB2yPqLJDHVaa3eW-wlbF67Uvbn-3o8ZTUPIhxaPzLdkZ8ejJ_tfrb72e5ne_Gv0x8OzlBt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spatial analysis and forecasting map of diarrhea incidents in Banjar District</title><source>EZB Free E-Journals</source><creator>Fakhrizal, Deni ; Suhartono, Eko ; Prihartini, Nopi Stiyati ; Noor, Meitria Syahdatina ; Syauqiah, Isna</creator><creatorcontrib>Fakhrizal, Deni ; Suhartono, Eko ; Prihartini, Nopi Stiyati ; Noor, Meitria Syahdatina ; Syauqiah, Isna</creatorcontrib><description>Diarrhea is a common disease in the community and can be fatal if treatment is delayed. Banjar District has recorded the highest prevalence of diarrhea in South Kalimantan for the past few years, making it one of the causes of death in toddlers. This study aims to conduct spatial analysis using Moran's I index and local indicators of spatial association (LISA). Diarrhea case predictions are made using the multiplicative decomposition time series method. The data used in this study are diarrhea case data from 20 sub-districts in Banjar District during the period 2016-2022. Although no global autocorrelation was found in Banjar District, there were two sub-districts that showed local autocorrelation. The prediction results show a decreasing trend in diarrhea cases in most sub-districts. Health interventions can be focused on areas with high risk, such as hotspot areas and areas predicted not to experience a decrease in diarrhea cases.</description><identifier>ISSN: 2252-8806</identifier><identifier>EISSN: 2620-4126</identifier><identifier>DOI: 10.11591/ijphs.v14i1.24682</identifier><language>eng</language><ispartof>International journal of public health science, 2025-03, Vol.14 (1), p.277</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9736-2758 ; 0000-0001-8406-6055 ; 0000-0002-1239-6335 ; 0000-0001-7544-7497 ; 0000-0003-4385-7621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fakhrizal, Deni</creatorcontrib><creatorcontrib>Suhartono, Eko</creatorcontrib><creatorcontrib>Prihartini, Nopi Stiyati</creatorcontrib><creatorcontrib>Noor, Meitria Syahdatina</creatorcontrib><creatorcontrib>Syauqiah, Isna</creatorcontrib><title>Spatial analysis and forecasting map of diarrhea incidents in Banjar District</title><title>International journal of public health science</title><description>Diarrhea is a common disease in the community and can be fatal if treatment is delayed. Banjar District has recorded the highest prevalence of diarrhea in South Kalimantan for the past few years, making it one of the causes of death in toddlers. This study aims to conduct spatial analysis using Moran's I index and local indicators of spatial association (LISA). Diarrhea case predictions are made using the multiplicative decomposition time series method. The data used in this study are diarrhea case data from 20 sub-districts in Banjar District during the period 2016-2022. Although no global autocorrelation was found in Banjar District, there were two sub-districts that showed local autocorrelation. The prediction results show a decreasing trend in diarrhea cases in most sub-districts. Health interventions can be focused on areas with high risk, such as hotspot areas and areas predicted not to experience a decrease in diarrhea cases.</description><issn>2252-8806</issn><issn>2620-4126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqdzsFqwkAQxvFFWqioL9DTvkDizmYN8apt8eJJ78uQbOqEuAkzi-DbNwSfoKfvf_ngp9QnmBxgt4ctdeNN8gc4gty6srILtbSlNZkDW75NbXc2qypTfqiNSGeMgcLB3hVLdb6MmAh7jRH7p5BM0eh24FCjJIq_-o6jHlrdEDLfAmqKNTUhJplKHzB2yPqLJDHVaa3eW-wlbF67Uvbn-3o8ZTUPIhxaPzLdkZ8ejJ_tfrb72e5ne_Gv0x8OzlBt</recordid><startdate>20250301</startdate><enddate>20250301</enddate><creator>Fakhrizal, Deni</creator><creator>Suhartono, Eko</creator><creator>Prihartini, Nopi Stiyati</creator><creator>Noor, Meitria Syahdatina</creator><creator>Syauqiah, Isna</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9736-2758</orcidid><orcidid>https://orcid.org/0000-0001-8406-6055</orcidid><orcidid>https://orcid.org/0000-0002-1239-6335</orcidid><orcidid>https://orcid.org/0000-0001-7544-7497</orcidid><orcidid>https://orcid.org/0000-0003-4385-7621</orcidid></search><sort><creationdate>20250301</creationdate><title>Spatial analysis and forecasting map of diarrhea incidents in Banjar District</title><author>Fakhrizal, Deni ; Suhartono, Eko ; Prihartini, Nopi Stiyati ; Noor, Meitria Syahdatina ; Syauqiah, Isna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_11591_ijphs_v14i1_246823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Fakhrizal, Deni</creatorcontrib><creatorcontrib>Suhartono, Eko</creatorcontrib><creatorcontrib>Prihartini, Nopi Stiyati</creatorcontrib><creatorcontrib>Noor, Meitria Syahdatina</creatorcontrib><creatorcontrib>Syauqiah, Isna</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of public health science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fakhrizal, Deni</au><au>Suhartono, Eko</au><au>Prihartini, Nopi Stiyati</au><au>Noor, Meitria Syahdatina</au><au>Syauqiah, Isna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial analysis and forecasting map of diarrhea incidents in Banjar District</atitle><jtitle>International journal of public health science</jtitle><date>2025-03-01</date><risdate>2025</risdate><volume>14</volume><issue>1</issue><spage>277</spage><pages>277-</pages><issn>2252-8806</issn><eissn>2620-4126</eissn><abstract>Diarrhea is a common disease in the community and can be fatal if treatment is delayed. Banjar District has recorded the highest prevalence of diarrhea in South Kalimantan for the past few years, making it one of the causes of death in toddlers. This study aims to conduct spatial analysis using Moran's I index and local indicators of spatial association (LISA). Diarrhea case predictions are made using the multiplicative decomposition time series method. The data used in this study are diarrhea case data from 20 sub-districts in Banjar District during the period 2016-2022. Although no global autocorrelation was found in Banjar District, there were two sub-districts that showed local autocorrelation. The prediction results show a decreasing trend in diarrhea cases in most sub-districts. Health interventions can be focused on areas with high risk, such as hotspot areas and areas predicted not to experience a decrease in diarrhea cases.</abstract><doi>10.11591/ijphs.v14i1.24682</doi><orcidid>https://orcid.org/0000-0002-9736-2758</orcidid><orcidid>https://orcid.org/0000-0001-8406-6055</orcidid><orcidid>https://orcid.org/0000-0002-1239-6335</orcidid><orcidid>https://orcid.org/0000-0001-7544-7497</orcidid><orcidid>https://orcid.org/0000-0003-4385-7621</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2252-8806 |
ispartof | International journal of public health science, 2025-03, Vol.14 (1), p.277 |
issn | 2252-8806 2620-4126 |
language | eng |
recordid | cdi_crossref_primary_10_11591_ijphs_v14i1_24682 |
source | EZB Free E-Journals |
title | Spatial analysis and forecasting map of diarrhea incidents in Banjar District |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T14%3A19%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20analysis%20and%20forecasting%20map%20of%20diarrhea%20incidents%20in%20Banjar%20District&rft.jtitle=International%20journal%20of%20public%20health%20science&rft.au=Fakhrizal,%20Deni&rft.date=2025-03-01&rft.volume=14&rft.issue=1&rft.spage=277&rft.pages=277-&rft.issn=2252-8806&rft.eissn=2620-4126&rft_id=info:doi/10.11591/ijphs.v14i1.24682&rft_dat=%3Ccrossref%3E10_11591_ijphs_v14i1_24682%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |