Validation on selected breast cancer drugs of physicochemical features by using machine learning models

Breast cancer is one of the leading causes of death among females today. The elbow approach determines the ideal number of clusters after determining that the Dataset is highly cluster able with the Hopkins statistic. Three distinct groups with distinct differences were produced using the dataset�...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of public health science 2024-06, Vol.13 (2), p.794
Hauptverfasser: Gupta, Vuddagiri MNSSVKR, Krishna, Chitta Venkata Phani, Murthy, Konakanchi Venkata Subrahmanya Srirama, Shankar, Reddy Shiva
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 794
container_title International journal of public health science
container_volume 13
creator Gupta, Vuddagiri MNSSVKR
Krishna, Chitta Venkata Phani
Murthy, Konakanchi Venkata Subrahmanya Srirama
Shankar, Reddy Shiva
description Breast cancer is one of the leading causes of death among females today. The elbow approach determines the ideal number of clusters after determining that the Dataset is highly cluster able with the Hopkins statistic. Three distinct groups with distinct differences were produced using the dataset's proposed expectation maximization fuzzy k-means clustering algorithm (PEMFKM). Different fuzzy clustering techniques, such as fuzzy k-means (FKM), fuzzy k-means with entropy (FKM.ENT), fuzzy k-means with entropy and noise (FKM.ENT.NOISE), Gustafson and Kessel - like fuzzy k-means (FKM.GK), Gustafson and Kessel - like fuzzy k-means with entropy regularization (FKM.GK.ENT), Gustafson and Kessel - like fuzzy kmeans with entropy regularization and noise (FKM.GK.ENT.NOISE), and PEMFKM, are evaluated. The partition coefficient (PC), partition entropy (PE), and Modified partition coefficient index (MPC) index values are better for FKM.GK than the suggested PEMFKM method. When compared to the FKM.GK method, the index values for the proposed PEMFKM algorithm have superior results for the parameters Silhouette (SIL), Xie and Beni index (XB), and fuzzy silhouette index (SIL.F). The results shows that the PEMFKM algorithm will provide better clusters and that the drugs in a given cluster may be combined for use in combination therapy for breast cancer treatment.
doi_str_mv 10.11591/ijphs.v13i2.23322
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_11591_ijphs_v13i2_23322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_11591_ijphs_v13i2_23322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c872-83790baaffa2db22a664cb8aef9f619b1cb5fe6935ab76be35efe09536cd0f9e3</originalsourceid><addsrcrecordid>eNotkM1qwzAQhEVpoaHNC_SkF3AqrWzFOpbQPwj0Eno1K3kVKzh20DqFvH2DWxiYYQ7D8AnxpNVK68rp53Q4dbz60SbBCowBuBELsKCKUoO9vWaooKhrZe_FkvmglNKm1K40C7H_xj61OKVxkFcx9RQmaqXPhDzJgEOgLNt83rMcozx1F05hDB0dU8BeRsLpnImlv8gzp2Evjxi6NJDsCfMwF2NLPT-Ku4g90_LfH8Tu7XW3-Si2X--fm5dtEer19aNZO-URY0RoPQBaWwZfI0UXrXZeB19Fss5U6NfWk6koknKVsaFV0ZF5EPA3G_LInCk2p5yOmC-NVs0Mq5lhNTOsZoZlfgFtO2Js</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Validation on selected breast cancer drugs of physicochemical features by using machine learning models</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gupta, Vuddagiri MNSSVKR ; Krishna, Chitta Venkata Phani ; Murthy, Konakanchi Venkata Subrahmanya Srirama ; Shankar, Reddy Shiva</creator><creatorcontrib>Gupta, Vuddagiri MNSSVKR ; Krishna, Chitta Venkata Phani ; Murthy, Konakanchi Venkata Subrahmanya Srirama ; Shankar, Reddy Shiva</creatorcontrib><description>Breast cancer is one of the leading causes of death among females today. The elbow approach determines the ideal number of clusters after determining that the Dataset is highly cluster able with the Hopkins statistic. Three distinct groups with distinct differences were produced using the dataset's proposed expectation maximization fuzzy k-means clustering algorithm (PEMFKM). Different fuzzy clustering techniques, such as fuzzy k-means (FKM), fuzzy k-means with entropy (FKM.ENT), fuzzy k-means with entropy and noise (FKM.ENT.NOISE), Gustafson and Kessel - like fuzzy k-means (FKM.GK), Gustafson and Kessel - like fuzzy k-means with entropy regularization (FKM.GK.ENT), Gustafson and Kessel - like fuzzy kmeans with entropy regularization and noise (FKM.GK.ENT.NOISE), and PEMFKM, are evaluated. The partition coefficient (PC), partition entropy (PE), and Modified partition coefficient index (MPC) index values are better for FKM.GK than the suggested PEMFKM method. When compared to the FKM.GK method, the index values for the proposed PEMFKM algorithm have superior results for the parameters Silhouette (SIL), Xie and Beni index (XB), and fuzzy silhouette index (SIL.F). The results shows that the PEMFKM algorithm will provide better clusters and that the drugs in a given cluster may be combined for use in combination therapy for breast cancer treatment.</description><identifier>ISSN: 2252-8806</identifier><identifier>EISSN: 2620-4126</identifier><identifier>DOI: 10.11591/ijphs.v13i2.23322</identifier><language>eng</language><ispartof>International journal of public health science, 2024-06, Vol.13 (2), p.794</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7144-2453 ; 0000-0001-8350-3911 ; 0000-0001-8452-3877 ; 0000-0001-5439-0348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gupta, Vuddagiri MNSSVKR</creatorcontrib><creatorcontrib>Krishna, Chitta Venkata Phani</creatorcontrib><creatorcontrib>Murthy, Konakanchi Venkata Subrahmanya Srirama</creatorcontrib><creatorcontrib>Shankar, Reddy Shiva</creatorcontrib><title>Validation on selected breast cancer drugs of physicochemical features by using machine learning models</title><title>International journal of public health science</title><description>Breast cancer is one of the leading causes of death among females today. The elbow approach determines the ideal number of clusters after determining that the Dataset is highly cluster able with the Hopkins statistic. Three distinct groups with distinct differences were produced using the dataset's proposed expectation maximization fuzzy k-means clustering algorithm (PEMFKM). Different fuzzy clustering techniques, such as fuzzy k-means (FKM), fuzzy k-means with entropy (FKM.ENT), fuzzy k-means with entropy and noise (FKM.ENT.NOISE), Gustafson and Kessel - like fuzzy k-means (FKM.GK), Gustafson and Kessel - like fuzzy k-means with entropy regularization (FKM.GK.ENT), Gustafson and Kessel - like fuzzy kmeans with entropy regularization and noise (FKM.GK.ENT.NOISE), and PEMFKM, are evaluated. The partition coefficient (PC), partition entropy (PE), and Modified partition coefficient index (MPC) index values are better for FKM.GK than the suggested PEMFKM method. When compared to the FKM.GK method, the index values for the proposed PEMFKM algorithm have superior results for the parameters Silhouette (SIL), Xie and Beni index (XB), and fuzzy silhouette index (SIL.F). The results shows that the PEMFKM algorithm will provide better clusters and that the drugs in a given cluster may be combined for use in combination therapy for breast cancer treatment.</description><issn>2252-8806</issn><issn>2620-4126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkM1qwzAQhEVpoaHNC_SkF3AqrWzFOpbQPwj0Eno1K3kVKzh20DqFvH2DWxiYYQ7D8AnxpNVK68rp53Q4dbz60SbBCowBuBELsKCKUoO9vWaooKhrZe_FkvmglNKm1K40C7H_xj61OKVxkFcx9RQmaqXPhDzJgEOgLNt83rMcozx1F05hDB0dU8BeRsLpnImlv8gzp2Evjxi6NJDsCfMwF2NLPT-Ku4g90_LfH8Tu7XW3-Si2X--fm5dtEer19aNZO-URY0RoPQBaWwZfI0UXrXZeB19Fss5U6NfWk6koknKVsaFV0ZF5EPA3G_LInCk2p5yOmC-NVs0Mq5lhNTOsZoZlfgFtO2Js</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Gupta, Vuddagiri MNSSVKR</creator><creator>Krishna, Chitta Venkata Phani</creator><creator>Murthy, Konakanchi Venkata Subrahmanya Srirama</creator><creator>Shankar, Reddy Shiva</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7144-2453</orcidid><orcidid>https://orcid.org/0000-0001-8350-3911</orcidid><orcidid>https://orcid.org/0000-0001-8452-3877</orcidid><orcidid>https://orcid.org/0000-0001-5439-0348</orcidid></search><sort><creationdate>20240601</creationdate><title>Validation on selected breast cancer drugs of physicochemical features by using machine learning models</title><author>Gupta, Vuddagiri MNSSVKR ; Krishna, Chitta Venkata Phani ; Murthy, Konakanchi Venkata Subrahmanya Srirama ; Shankar, Reddy Shiva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c872-83790baaffa2db22a664cb8aef9f619b1cb5fe6935ab76be35efe09536cd0f9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Vuddagiri MNSSVKR</creatorcontrib><creatorcontrib>Krishna, Chitta Venkata Phani</creatorcontrib><creatorcontrib>Murthy, Konakanchi Venkata Subrahmanya Srirama</creatorcontrib><creatorcontrib>Shankar, Reddy Shiva</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of public health science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Vuddagiri MNSSVKR</au><au>Krishna, Chitta Venkata Phani</au><au>Murthy, Konakanchi Venkata Subrahmanya Srirama</au><au>Shankar, Reddy Shiva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validation on selected breast cancer drugs of physicochemical features by using machine learning models</atitle><jtitle>International journal of public health science</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>13</volume><issue>2</issue><spage>794</spage><pages>794-</pages><issn>2252-8806</issn><eissn>2620-4126</eissn><abstract>Breast cancer is one of the leading causes of death among females today. The elbow approach determines the ideal number of clusters after determining that the Dataset is highly cluster able with the Hopkins statistic. Three distinct groups with distinct differences were produced using the dataset's proposed expectation maximization fuzzy k-means clustering algorithm (PEMFKM). Different fuzzy clustering techniques, such as fuzzy k-means (FKM), fuzzy k-means with entropy (FKM.ENT), fuzzy k-means with entropy and noise (FKM.ENT.NOISE), Gustafson and Kessel - like fuzzy k-means (FKM.GK), Gustafson and Kessel - like fuzzy k-means with entropy regularization (FKM.GK.ENT), Gustafson and Kessel - like fuzzy kmeans with entropy regularization and noise (FKM.GK.ENT.NOISE), and PEMFKM, are evaluated. The partition coefficient (PC), partition entropy (PE), and Modified partition coefficient index (MPC) index values are better for FKM.GK than the suggested PEMFKM method. When compared to the FKM.GK method, the index values for the proposed PEMFKM algorithm have superior results for the parameters Silhouette (SIL), Xie and Beni index (XB), and fuzzy silhouette index (SIL.F). The results shows that the PEMFKM algorithm will provide better clusters and that the drugs in a given cluster may be combined for use in combination therapy for breast cancer treatment.</abstract><doi>10.11591/ijphs.v13i2.23322</doi><orcidid>https://orcid.org/0000-0001-7144-2453</orcidid><orcidid>https://orcid.org/0000-0001-8350-3911</orcidid><orcidid>https://orcid.org/0000-0001-8452-3877</orcidid><orcidid>https://orcid.org/0000-0001-5439-0348</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2252-8806
ispartof International journal of public health science, 2024-06, Vol.13 (2), p.794
issn 2252-8806
2620-4126
language eng
recordid cdi_crossref_primary_10_11591_ijphs_v13i2_23322
source EZB-FREE-00999 freely available EZB journals
title Validation on selected breast cancer drugs of physicochemical features by using machine learning models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A13%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validation%20on%20selected%20breast%20cancer%20drugs%20of%20physicochemical%20features%20by%20using%20machine%20learning%20models&rft.jtitle=International%20journal%20of%20public%20health%20science&rft.au=Gupta,%20Vuddagiri%20MNSSVKR&rft.date=2024-06-01&rft.volume=13&rft.issue=2&rft.spage=794&rft.pages=794-&rft.issn=2252-8806&rft.eissn=2620-4126&rft_id=info:doi/10.11591/ijphs.v13i2.23322&rft_dat=%3Ccrossref%3E10_11591_ijphs_v13i2_23322%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true