Abstract B46: Surface chemistry governs cellular tropism of nanoparticles in the brain

Purpose: Nanoparticles (NPs) carry important promises for the treatment of neurological diseases, such as glioblastoma multiform (GBM) and Parkinson's disease. Several methods have been developed to achieve higher NP concentrations in the brain, including local infusions using convection enhanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2017-01, Vol.77 (2_Supplement), p.B46-B46
Hauptverfasser: Song, Eric, Gaudin, Alice, King, Amanda R., Seo, Youngeun, Won, Paul, Suh, Heewon, Deng, Yang, Cui, Jiajia, Tietjen, Gregory, Saltzman, W Mark
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: Nanoparticles (NPs) carry important promises for the treatment of neurological diseases, such as glioblastoma multiform (GBM) and Parkinson's disease. Several methods have been developed to achieve higher NP concentrations in the brain, including local infusions using convection enhanced delivery (CED), focused ultrasound, and the use of surface targeting moieties specifically designed to increase the passage across the blood brain barrier (BBB). However, even when sufficient NP amounts are delivered to the targeted region, a better understanding of the interactions between the particles and the brain parenchyma will be necessary to reach clinical efficacy. This is particularly true for polymeric NPs, which behavior can be dramatically influenced by multiple factors such as their size and their surface properties. Here, we investigated the cellular fate of PLA-based nanoparticles of similar size, but bearing different surface modifications, following CED in the healthy brain and the tumor bearing brain. Methods: Four PLA-based NP formulations with different surface modifications (PLA, PLA-PEG, PLA-HPG and PLA-HPG-CHO) and similar size were obtained by emulsion or nanoprecipitation. CED of each formulation was performed in healthy or tumor bearing brain, and comparable volumes of distribution were obtained. 4 h and 24 h after infusion, brains were harvested and processed for flow cytometry analysis and immunohistochemical staining, to quantify particle internalization by neurons, astrocytes, microglia and tumor cells, when applicable. In vitro uptake studies were performed using relevant cell lines for neurons (N27 cells), astrocytes (TNC1), microglia (BV2) and tumors (RG2). Rate of association kinetics of different particles with these cells were derived from an uptake study and then correlated with in vivo internalization results. Finally, to evaluate how different NPs surface modifications and their different internalization patterns can influence survival benefits, the different particles were loaded with epothilone B (EB) and infused into rats bearing RG2 tumors via CED. Results: We observed that in the healthy brain, stealth NPs distributed evenly between neurons, astrocytes and microglia, while exhibiting the highest specificity towards tumor cells in the tumor bearing brain. Overall, the functionalization of PLA NPs with aldehyde groups allowed for an increased uptake by all cell types, in both healthy and tumor bearing brain. These NPs als
ISSN:0008-5472
1538-7445
DOI:10.1158/1538-7445.EPSO16-B46