Abstract LB102: Hexyl-(cuban-1-yl-methyl)-biguanide (HCB) suppresses N-glycosylation of immune checkpoint proteins B7-H3 and B7-H4, reverses tumor hypoxia, decreases intratumoral regulatory T cells, and increases intratumoral CD8+ T cells in the ovarian dependent ER+HER2- SSM2ucd mammary cancer allograft model

Introduction: Immune checkpoint blockade (ICB) has clinical activity in triple negative breast cancer (TNBC) but is less effective in the ER+HER2- signature, where there is a cold immune microenvironment (IM) and regulatory T cells (Tregs) may suppress effector T cells. Agents that activate the IM b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2023-04, Vol.83 (8_Supplement), p.LB102-LB102
Hauptverfasser: Guo, Zhijun, Lei, Jianxun, Venkatesh, Hrishi, Owen, David, Bass, Adam, Cannon, Christine, McCarra, Joshua, Koniar, Brenda, Flory, Craig, Norris, Beverly, Schumacher, Robert J., Jayaraman, Swaathi, Hawse, John, Antonarakis, Emmanuel S., Petricoin, Emanuel F., Wulfkuhle, Julia, Cardiff, Robert D., Ambrose, Elizabeth A., Georg, Gunda I., Schwertfeger, Kaylee L., Farrar, Michael A., Croix, Brad St, Goetz, Matthew P., Potter, David A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction: Immune checkpoint blockade (ICB) has clinical activity in triple negative breast cancer (TNBC) but is less effective in the ER+HER2- signature, where there is a cold immune microenvironment (IM) and regulatory T cells (Tregs) may suppress effector T cells. Agents that activate the IM by turning cold tumors hot may support ICB. The biguanides hexyl-benzyl-biguanide (HBB) and its bioisostere hexyl-(cuban-1-yl-methyl)-biguanide (HCB) are candidate agents to activate the IM because they potently inhibit biosynthesis of immunosuppressive epoxyeicosatrienoic acids (EETs) and EET-driven oxidative phosphorylation (OXPHOS), while blocking N-glycosylation of immune checkpoint (IC) proteins. We hypothesized that reversal of hypoxia by biguanides in the ovarian dependent ER+HER2- STAT1 KO SSM2ucd mouse mammary carcinoma (MC) model would suppress Tregs and promote effector T cells in the tumor IM. While the SSM2ucd model did not express immune checkpoint protein PD-L1 (B7-H1), it did express related IC proteins B7-H3 and B7-H4. We hypothesized that by inhibiting OXPHOS and reducing N-glycosylation of immune checkpoint proteins, HBB and HCB may promote efficacy of ICB. We chose the SSM2ucd model to test impact of HCB on the ER+ MC IM. Results: SSM2ucd cells exhibited longer tumor latency (60 days) than the basal 4T1 (10 days) and 67NR (20 days) mouse MC models. SSM2ucd tumor reimplantation shortened latency by more than half, to 20 days. Immunohistochemistry showed that B7-H3 and B7-H4 protein levels were 1.2 (P=0.001) and 1.3-fold (P=0.04) higher in reimplanted tumors vs. control. In SSM2ucd cells, HCB inhibited N-glycosylation of B7-H3 (P=0.01) by 35% and B7-H4 (P=0.02) by 45% and suppressed TGFβ induction of B7-H3 by 21% (P=0.02) and B7-H4 by 79% (P=0.001) at 24 hours, while 14,15-EET promoted N-glycosylation of B7-H3 (1.2-fold; P=0.03) and B7-H4 (1.3-fold; P=0.04) at 4 hours. Effects of HBB and HCB on anti-CD3 and anti-CD28 stimulated mouse splenocytes were assayed. The proliferative effects of HBB on CD4+ and CD8+ cells peaked at 12 uM (p
ISSN:1538-7445
1538-7445
DOI:10.1158/1538-7445.AM2023-LB102