Abstract 3590: Resistance mechanisms to ALK inhibitors

Purpose: ALK-rearranged non-small cell lung cancer (NSCLC) was first reported in 2007. Approximately 3-5% of NSCLCs harbor an ALK gene rearrangement. The first-generation ALK tyrosine kinase inhibitor (TKI) crizotinib is a standard therapy for patients with advanced ALK-rearranged NSCLC. Several nex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2015-08, Vol.75 (15_Supplement), p.3590-3590
Hauptverfasser: Katayama, Ryohei, Yanagitani, Noriko, Koike, Sumie, Sakashita, Takuya, Kitazono, Satoru, Nishio, Makoto, Okuno, Yasushi, Engelman, Jeffrey A., Shaw, Alice T., Fujita, Naoya
Format: Artikel
Sprache:eng ; jpn
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: ALK-rearranged non-small cell lung cancer (NSCLC) was first reported in 2007. Approximately 3-5% of NSCLCs harbor an ALK gene rearrangement. The first-generation ALK tyrosine kinase inhibitor (TKI) crizotinib is a standard therapy for patients with advanced ALK-rearranged NSCLC. Several next-generation ALK-TKIs have entered the clinic and have shown promising antitumor activity in crizotinib-resistant patients. As patients still relapse even on these next-generation ALK-TKIs, we examined mechanisms of resistance to one next-generation ALK-TKI - alectinib - and potential strategies to overcome this resistance. Experimental Procedure: We established a cell line model of alectinib resistance, and analyzed resistant tumor specimens from patients who had relapsed on alectinib. Cell lines were also established under an IRB-approved protocol when there was sufficient fresh tumor tissue. We established Ba/F3 cells expressing EML4-ALK and performed ENU mutagenesis to compare potential crizotinib or alectinib-resistance mutations. In addition, we developed Ba/F3 models harboring ALK resistance mutations and evaluated the potency of multiple next-generation ALK-TKIs including 3rd generation ALK inhibitor in these models and in vivo. To elucidate structure-activity-relationships of ALK resistance mutations, we performed computational thermodynamic simulation with MP-CAFEE. Results: We identified multiple resistance mutations, including ALK I1171N, I1171S, and V1180L, from the ENU mutagenesis screen and the cell line model. In addition we found secondary mutations at the I1171 residue from the Japanese patients who developed resistance to alectinib or crizotinib. Both ALK mutations (V1180L and I1171 mutations) conferred resistance to alectinib as well as to crizotinib, but were sensitive to ceritinib and other next-generation ALK-TKIs. Based on thermodynamics simulation, each resistance mutation is predicted to lead to distinct structural alterations that decrease the binding affinity of ALK-TKIs for ALK. Conclusions: We have identified multiple alectinib-resistance mutations from the cell line model, patient derived cell lines, and tumor tissues, and ENU mutagenesis. ALK secondary mutations arising after alectinib exposure are sensitive to other next generation ALK-TKIs. These findings suggest a potential role for sequential therapy with multiple next-generation ALK-TKIs in patients with advanced, ALK-rearranged cancers. Citation Format: Ryohei Katayama, Nori
ISSN:0008-5472
1538-7445
DOI:10.1158/1538-7445.AM2015-3590