Effects of Elastic Walls on the Thermal Performance of a Counterflow Heat Exchanger
Using elastic plates in combination with counterflow heat exchangers is an innovative aspect of thermal energy storage systems (TES). The incorporation of elastic plates dramatically enhances heat transfer. However, prior studies have yet to thoroughly investigate the effects of exerting force on th...
Gespeichert in:
Veröffentlicht in: | International journal of energy research 2024-01, Vol.2024 (1) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | International journal of energy research |
container_volume | 2024 |
creator | Adibi, Tohid Razavi, Seyed Esmail Ahmed, Shams Forruque Shakor, Shakhawan Mohammed Liu, Gang |
description | Using elastic plates in combination with counterflow heat exchangers is an innovative aspect of thermal energy storage systems (TES). The incorporation of elastic plates dramatically enhances heat transfer. However, prior studies have yet to thoroughly investigate the effects of exerting force on these elastic plates. The flow and heat transfer in a counterflow plate heat exchanger with elastic parts on the lower and upper plates are numerically investigated in the current study. The study employs fluid–structure interaction (FSI) modeling to account for the elastic behavior of these plates, with external forces applied downward on the upper plate and upward on the lower plate. The analysis focuses on five different heat exchanger configurations, each with elastic plates positioned at varying locations. The results indicate that heat exchangers with elastic plates outperform their rigid counterparts, achieving efficiency improvements ranging from 17% to 140%, with the highest performance observed in configuration B, where the elastic plates are symmetrically placed in the center of the exchanger. Heat transfer rates for this configuration are up to 30% higher than in other designs. Additionally, a tripling of the Reynolds number results in a 47% increase in efficiency for configuration B, while doubling the applied external force increases the heat transfer rate by only 4%. These findings highlight the potential of elastic plate designs to enhance the efficiency of heat exchangers, with promising applications for condensers, evaporators, and boilers. |
doi_str_mv | 10.1155/er/8895936 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1155_er_8895936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154435083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c184t-f97cfc3d081cde0d2ce3c2258fbddfe6289733bcb4ac3ddf4d86d6929a2ef92b3</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKsbf0HAnTA2j3kkSymjFQoKVuwuZJIb2zKd1CRF_femtKtzOefjHjgI3VLyQGlVTSBMhJCV5PUZGlEiZUFpuTxHI8JrXkjSLC_RVYwbQnJGmxF6b50DkyL2Dre9jmlt8Kfu-2wMOK0AL1YQtrrHbxCcz9dg4MBqPPX7IWWz9z94Bjrh9tes9PAF4RpdON1HuDnpGH08tYvprJi_Pr9MH-eFoaJMhZONcYZbIqixQCwzwA1jlXCdtQ5qJmTDeWe6UmfKutKK2taSSc3ASdbxMbo7_t0F_72HmNTG78OQKxWnVVnyigieqfsjZYKPMYBTu7De6vCnKFGH0RQEdRqN_wOXzmAU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3154435083</pqid></control><display><type>article</type><title>Effects of Elastic Walls on the Thermal Performance of a Counterflow Heat Exchanger</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Open Access</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Adibi, Tohid ; Razavi, Seyed Esmail ; Ahmed, Shams Forruque ; Shakor, Shakhawan Mohammed ; Liu, Gang</creator><contributor>Aksoy, Muharrem Hilmi ; Muharrem Hilmi Aksoy</contributor><creatorcontrib>Adibi, Tohid ; Razavi, Seyed Esmail ; Ahmed, Shams Forruque ; Shakor, Shakhawan Mohammed ; Liu, Gang ; Aksoy, Muharrem Hilmi ; Muharrem Hilmi Aksoy</creatorcontrib><description>Using elastic plates in combination with counterflow heat exchangers is an innovative aspect of thermal energy storage systems (TES). The incorporation of elastic plates dramatically enhances heat transfer. However, prior studies have yet to thoroughly investigate the effects of exerting force on these elastic plates. The flow and heat transfer in a counterflow plate heat exchanger with elastic parts on the lower and upper plates are numerically investigated in the current study. The study employs fluid–structure interaction (FSI) modeling to account for the elastic behavior of these plates, with external forces applied downward on the upper plate and upward on the lower plate. The analysis focuses on five different heat exchanger configurations, each with elastic plates positioned at varying locations. The results indicate that heat exchangers with elastic plates outperform their rigid counterparts, achieving efficiency improvements ranging from 17% to 140%, with the highest performance observed in configuration B, where the elastic plates are symmetrically placed in the center of the exchanger. Heat transfer rates for this configuration are up to 30% higher than in other designs. Additionally, a tripling of the Reynolds number results in a 47% increase in efficiency for configuration B, while doubling the applied external force increases the heat transfer rate by only 4%. These findings highlight the potential of elastic plate designs to enhance the efficiency of heat exchangers, with promising applications for condensers, evaporators, and boilers.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1155/er/8895936</identifier><language>eng</language><publisher>Bognor Regis: Hindawi Limited</publisher><subject>Condensers ; Condensers (liquefiers) ; Configuration management ; Cooling ; Counterflow ; Efficiency ; Elastic analysis ; Elastic plates ; Elasticity ; Energy storage ; Evaporators ; Fluid flow ; Fluid-structure interaction ; Fluids ; Heat exchangers ; Heat transfer ; Partial differential equations ; Plate heat exchangers ; Reynolds number ; Temperature ; Thermal energy ; Viscoelasticity ; Viscosity</subject><ispartof>International journal of energy research, 2024-01, Vol.2024 (1)</ispartof><rights>Copyright © 2024 Tohid Adibi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c184t-f97cfc3d081cde0d2ce3c2258fbddfe6289733bcb4ac3ddf4d86d6929a2ef92b3</cites><orcidid>0000-0003-4315-4520 ; 0000-0003-3360-3636</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3154435083/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3154435083?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,21368,27903,27904,33723,43784,64361,64365,72215,74048</link.rule.ids></links><search><contributor>Aksoy, Muharrem Hilmi</contributor><contributor>Muharrem Hilmi Aksoy</contributor><creatorcontrib>Adibi, Tohid</creatorcontrib><creatorcontrib>Razavi, Seyed Esmail</creatorcontrib><creatorcontrib>Ahmed, Shams Forruque</creatorcontrib><creatorcontrib>Shakor, Shakhawan Mohammed</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><title>Effects of Elastic Walls on the Thermal Performance of a Counterflow Heat Exchanger</title><title>International journal of energy research</title><description>Using elastic plates in combination with counterflow heat exchangers is an innovative aspect of thermal energy storage systems (TES). The incorporation of elastic plates dramatically enhances heat transfer. However, prior studies have yet to thoroughly investigate the effects of exerting force on these elastic plates. The flow and heat transfer in a counterflow plate heat exchanger with elastic parts on the lower and upper plates are numerically investigated in the current study. The study employs fluid–structure interaction (FSI) modeling to account for the elastic behavior of these plates, with external forces applied downward on the upper plate and upward on the lower plate. The analysis focuses on five different heat exchanger configurations, each with elastic plates positioned at varying locations. The results indicate that heat exchangers with elastic plates outperform their rigid counterparts, achieving efficiency improvements ranging from 17% to 140%, with the highest performance observed in configuration B, where the elastic plates are symmetrically placed in the center of the exchanger. Heat transfer rates for this configuration are up to 30% higher than in other designs. Additionally, a tripling of the Reynolds number results in a 47% increase in efficiency for configuration B, while doubling the applied external force increases the heat transfer rate by only 4%. These findings highlight the potential of elastic plate designs to enhance the efficiency of heat exchangers, with promising applications for condensers, evaporators, and boilers.</description><subject>Condensers</subject><subject>Condensers (liquefiers)</subject><subject>Configuration management</subject><subject>Cooling</subject><subject>Counterflow</subject><subject>Efficiency</subject><subject>Elastic analysis</subject><subject>Elastic plates</subject><subject>Elasticity</subject><subject>Energy storage</subject><subject>Evaporators</subject><subject>Fluid flow</subject><subject>Fluid-structure interaction</subject><subject>Fluids</subject><subject>Heat exchangers</subject><subject>Heat transfer</subject><subject>Partial differential equations</subject><subject>Plate heat exchangers</subject><subject>Reynolds number</subject><subject>Temperature</subject><subject>Thermal energy</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkEtLAzEUhYMoWKsbf0HAnTA2j3kkSymjFQoKVuwuZJIb2zKd1CRF_femtKtzOefjHjgI3VLyQGlVTSBMhJCV5PUZGlEiZUFpuTxHI8JrXkjSLC_RVYwbQnJGmxF6b50DkyL2Dre9jmlt8Kfu-2wMOK0AL1YQtrrHbxCcz9dg4MBqPPX7IWWz9z94Bjrh9tes9PAF4RpdON1HuDnpGH08tYvprJi_Pr9MH-eFoaJMhZONcYZbIqixQCwzwA1jlXCdtQ5qJmTDeWe6UmfKutKK2taSSc3ASdbxMbo7_t0F_72HmNTG78OQKxWnVVnyigieqfsjZYKPMYBTu7De6vCnKFGH0RQEdRqN_wOXzmAU</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Adibi, Tohid</creator><creator>Razavi, Seyed Esmail</creator><creator>Ahmed, Shams Forruque</creator><creator>Shakor, Shakhawan Mohammed</creator><creator>Liu, Gang</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4315-4520</orcidid><orcidid>https://orcid.org/0000-0003-3360-3636</orcidid></search><sort><creationdate>202401</creationdate><title>Effects of Elastic Walls on the Thermal Performance of a Counterflow Heat Exchanger</title><author>Adibi, Tohid ; Razavi, Seyed Esmail ; Ahmed, Shams Forruque ; Shakor, Shakhawan Mohammed ; Liu, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c184t-f97cfc3d081cde0d2ce3c2258fbddfe6289733bcb4ac3ddf4d86d6929a2ef92b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Condensers</topic><topic>Condensers (liquefiers)</topic><topic>Configuration management</topic><topic>Cooling</topic><topic>Counterflow</topic><topic>Efficiency</topic><topic>Elastic analysis</topic><topic>Elastic plates</topic><topic>Elasticity</topic><topic>Energy storage</topic><topic>Evaporators</topic><topic>Fluid flow</topic><topic>Fluid-structure interaction</topic><topic>Fluids</topic><topic>Heat exchangers</topic><topic>Heat transfer</topic><topic>Partial differential equations</topic><topic>Plate heat exchangers</topic><topic>Reynolds number</topic><topic>Temperature</topic><topic>Thermal energy</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adibi, Tohid</creatorcontrib><creatorcontrib>Razavi, Seyed Esmail</creatorcontrib><creatorcontrib>Ahmed, Shams Forruque</creatorcontrib><creatorcontrib>Shakor, Shakhawan Mohammed</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adibi, Tohid</au><au>Razavi, Seyed Esmail</au><au>Ahmed, Shams Forruque</au><au>Shakor, Shakhawan Mohammed</au><au>Liu, Gang</au><au>Aksoy, Muharrem Hilmi</au><au>Muharrem Hilmi Aksoy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Elastic Walls on the Thermal Performance of a Counterflow Heat Exchanger</atitle><jtitle>International journal of energy research</jtitle><date>2024-01</date><risdate>2024</risdate><volume>2024</volume><issue>1</issue><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Using elastic plates in combination with counterflow heat exchangers is an innovative aspect of thermal energy storage systems (TES). The incorporation of elastic plates dramatically enhances heat transfer. However, prior studies have yet to thoroughly investigate the effects of exerting force on these elastic plates. The flow and heat transfer in a counterflow plate heat exchanger with elastic parts on the lower and upper plates are numerically investigated in the current study. The study employs fluid–structure interaction (FSI) modeling to account for the elastic behavior of these plates, with external forces applied downward on the upper plate and upward on the lower plate. The analysis focuses on five different heat exchanger configurations, each with elastic plates positioned at varying locations. The results indicate that heat exchangers with elastic plates outperform their rigid counterparts, achieving efficiency improvements ranging from 17% to 140%, with the highest performance observed in configuration B, where the elastic plates are symmetrically placed in the center of the exchanger. Heat transfer rates for this configuration are up to 30% higher than in other designs. Additionally, a tripling of the Reynolds number results in a 47% increase in efficiency for configuration B, while doubling the applied external force increases the heat transfer rate by only 4%. These findings highlight the potential of elastic plate designs to enhance the efficiency of heat exchangers, with promising applications for condensers, evaporators, and boilers.</abstract><cop>Bognor Regis</cop><pub>Hindawi Limited</pub><doi>10.1155/er/8895936</doi><orcidid>https://orcid.org/0000-0003-4315-4520</orcidid><orcidid>https://orcid.org/0000-0003-3360-3636</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2024-01, Vol.2024 (1) |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_crossref_primary_10_1155_er_8895936 |
source | DOAJ Directory of Open Access Journals; Wiley Online Library Open Access; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central |
subjects | Condensers Condensers (liquefiers) Configuration management Cooling Counterflow Efficiency Elastic analysis Elastic plates Elasticity Energy storage Evaporators Fluid flow Fluid-structure interaction Fluids Heat exchangers Heat transfer Partial differential equations Plate heat exchangers Reynolds number Temperature Thermal energy Viscoelasticity Viscosity |
title | Effects of Elastic Walls on the Thermal Performance of a Counterflow Heat Exchanger |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Elastic%20Walls%20on%20the%20Thermal%20Performance%20of%20a%20Counterflow%20Heat%20Exchanger&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Adibi,%20Tohid&rft.date=2024-01&rft.volume=2024&rft.issue=1&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1155/er/8895936&rft_dat=%3Cproquest_cross%3E3154435083%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3154435083&rft_id=info:pmid/&rfr_iscdi=true |