Computer Vision-Based Autonomous Method for Quantitative Detection of Loose Bolts in Bolted Connections of Steel Structures

In this study, an autonomous computer vision-based method is presented to quantitatively detect loose bolts. The method integrates keypoint detection via YOLOv5 and PIPNet, distortion correction via perspective transformation, and rotation angles quantification via geometric imaging. Distortion corr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural control and health monitoring 2023-05, Vol.2023, p.1-17
Hauptverfasser: Lao, Wulve, Cui, Chuang, Zhang, Dengke, Zhang, Qinghua, Bao, Yi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue
container_start_page 1
container_title Structural control and health monitoring
container_volume 2023
creator Lao, Wulve
Cui, Chuang
Zhang, Dengke
Zhang, Qinghua
Bao, Yi
description In this study, an autonomous computer vision-based method is presented to quantitatively detect loose bolts. The method integrates keypoint detection via YOLOv5 and PIPNet, distortion correction via perspective transformation, and rotation angles quantification via geometric imaging. Distortion correction is incorporated to address skewed angles and improve the accuracy of rotation angles. A representative experiment on bolted connection of steel structures is conducted to evaluate the presented approach. The effects of the focal distance, skewed angle, and lighting conditions on the detection and quantification performance are evaluated by varying the imaging conditions. The results demonstrate that the presented approach automatically detects all bolts and their corners, irrespective of the imaging conditions. No false detection occurs, and the quantification errors are lower than 1°. The proposed method can be deployed for automatic detection of loose bolts and quantification of rotation angles in bolted connections under different imaging conditions.
doi_str_mv 10.1155/2023/8817058
format Article
fullrecord <record><control><sourceid>crossref_hinda</sourceid><recordid>TN_cdi_crossref_primary_10_1155_2023_8817058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1155_2023_8817058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-71a4ea2b90aee45ac73e92ca354850a04c052d421f8bde7077dab13fba68b3003</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4wO8h1A_4sZdtqE8pCKEeGyjiTNRjVq7sh0Q4udJacWSzcxdnHsXh5Bzzq44V2okmJAjrXnBlD4gA65ylQkxlod_WaljchLjO2NiLLQakO_SrzddwkDfbLTeZTOI2NBpl7zza99F-oBp6Rva-kCfOnDJJkj2A-k1JjSpr1Df0oX3EenMr1Kk1v2GfqX0zu2YuIWeE-Kqv6EzqQsYT8lRC6uIZ_s_JK8385fyLls83t6X00VmJJukrOCQI4h6wgAxV2AKiRNhQKpcKwYsN0yJJhe81XWDBSuKBmou2xrGupaMySG53O2a4GMM2FabYNcQvirOqq24aiuu2ovr8YsdvrSugU_7P_0DRMBvnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computer Vision-Based Autonomous Method for Quantitative Detection of Loose Bolts in Bolted Connections of Steel Structures</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Lao, Wulve ; Cui, Chuang ; Zhang, Dengke ; Zhang, Qinghua ; Bao, Yi</creator><contributor>Chen, Lin</contributor><creatorcontrib>Lao, Wulve ; Cui, Chuang ; Zhang, Dengke ; Zhang, Qinghua ; Bao, Yi ; Chen, Lin</creatorcontrib><description>In this study, an autonomous computer vision-based method is presented to quantitatively detect loose bolts. The method integrates keypoint detection via YOLOv5 and PIPNet, distortion correction via perspective transformation, and rotation angles quantification via geometric imaging. Distortion correction is incorporated to address skewed angles and improve the accuracy of rotation angles. A representative experiment on bolted connection of steel structures is conducted to evaluate the presented approach. The effects of the focal distance, skewed angle, and lighting conditions on the detection and quantification performance are evaluated by varying the imaging conditions. The results demonstrate that the presented approach automatically detects all bolts and their corners, irrespective of the imaging conditions. No false detection occurs, and the quantification errors are lower than 1°. The proposed method can be deployed for automatic detection of loose bolts and quantification of rotation angles in bolted connections under different imaging conditions.</description><identifier>ISSN: 1545-2255</identifier><identifier>EISSN: 1545-2263</identifier><identifier>DOI: 10.1155/2023/8817058</identifier><language>eng</language><publisher>Hindawi</publisher><ispartof>Structural control and health monitoring, 2023-05, Vol.2023, p.1-17</ispartof><rights>Copyright © 2023 Wulve Lao et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-71a4ea2b90aee45ac73e92ca354850a04c052d421f8bde7077dab13fba68b3003</citedby><cites>FETCH-LOGICAL-c309t-71a4ea2b90aee45ac73e92ca354850a04c052d421f8bde7077dab13fba68b3003</cites><orcidid>0009-0005-6965-3354 ; 0009-0005-4289-3809 ; 0000-0002-2766-2077 ; 0000-0002-7565-0548 ; 0000-0002-9923-5066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,873,27901,27902</link.rule.ids></links><search><contributor>Chen, Lin</contributor><creatorcontrib>Lao, Wulve</creatorcontrib><creatorcontrib>Cui, Chuang</creatorcontrib><creatorcontrib>Zhang, Dengke</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Bao, Yi</creatorcontrib><title>Computer Vision-Based Autonomous Method for Quantitative Detection of Loose Bolts in Bolted Connections of Steel Structures</title><title>Structural control and health monitoring</title><description>In this study, an autonomous computer vision-based method is presented to quantitatively detect loose bolts. The method integrates keypoint detection via YOLOv5 and PIPNet, distortion correction via perspective transformation, and rotation angles quantification via geometric imaging. Distortion correction is incorporated to address skewed angles and improve the accuracy of rotation angles. A representative experiment on bolted connection of steel structures is conducted to evaluate the presented approach. The effects of the focal distance, skewed angle, and lighting conditions on the detection and quantification performance are evaluated by varying the imaging conditions. The results demonstrate that the presented approach automatically detects all bolts and their corners, irrespective of the imaging conditions. No false detection occurs, and the quantification errors are lower than 1°. The proposed method can be deployed for automatic detection of loose bolts and quantification of rotation angles in bolted connections under different imaging conditions.</description><issn>1545-2255</issn><issn>1545-2263</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kMtOwzAQRS0EEqWw4wO8h1A_4sZdtqE8pCKEeGyjiTNRjVq7sh0Q4udJacWSzcxdnHsXh5Bzzq44V2okmJAjrXnBlD4gA65ylQkxlod_WaljchLjO2NiLLQakO_SrzddwkDfbLTeZTOI2NBpl7zza99F-oBp6Rva-kCfOnDJJkj2A-k1JjSpr1Df0oX3EenMr1Kk1v2GfqX0zu2YuIWeE-Kqv6EzqQsYT8lRC6uIZ_s_JK8385fyLls83t6X00VmJJukrOCQI4h6wgAxV2AKiRNhQKpcKwYsN0yJJhe81XWDBSuKBmou2xrGupaMySG53O2a4GMM2FabYNcQvirOqq24aiuu2ovr8YsdvrSugU_7P_0DRMBvnw</recordid><startdate>20230525</startdate><enddate>20230525</enddate><creator>Lao, Wulve</creator><creator>Cui, Chuang</creator><creator>Zhang, Dengke</creator><creator>Zhang, Qinghua</creator><creator>Bao, Yi</creator><general>Hindawi</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0005-6965-3354</orcidid><orcidid>https://orcid.org/0009-0005-4289-3809</orcidid><orcidid>https://orcid.org/0000-0002-2766-2077</orcidid><orcidid>https://orcid.org/0000-0002-7565-0548</orcidid><orcidid>https://orcid.org/0000-0002-9923-5066</orcidid></search><sort><creationdate>20230525</creationdate><title>Computer Vision-Based Autonomous Method for Quantitative Detection of Loose Bolts in Bolted Connections of Steel Structures</title><author>Lao, Wulve ; Cui, Chuang ; Zhang, Dengke ; Zhang, Qinghua ; Bao, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-71a4ea2b90aee45ac73e92ca354850a04c052d421f8bde7077dab13fba68b3003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lao, Wulve</creatorcontrib><creatorcontrib>Cui, Chuang</creatorcontrib><creatorcontrib>Zhang, Dengke</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Bao, Yi</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><jtitle>Structural control and health monitoring</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lao, Wulve</au><au>Cui, Chuang</au><au>Zhang, Dengke</au><au>Zhang, Qinghua</au><au>Bao, Yi</au><au>Chen, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer Vision-Based Autonomous Method for Quantitative Detection of Loose Bolts in Bolted Connections of Steel Structures</atitle><jtitle>Structural control and health monitoring</jtitle><date>2023-05-25</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1545-2255</issn><eissn>1545-2263</eissn><abstract>In this study, an autonomous computer vision-based method is presented to quantitatively detect loose bolts. The method integrates keypoint detection via YOLOv5 and PIPNet, distortion correction via perspective transformation, and rotation angles quantification via geometric imaging. Distortion correction is incorporated to address skewed angles and improve the accuracy of rotation angles. A representative experiment on bolted connection of steel structures is conducted to evaluate the presented approach. The effects of the focal distance, skewed angle, and lighting conditions on the detection and quantification performance are evaluated by varying the imaging conditions. The results demonstrate that the presented approach automatically detects all bolts and their corners, irrespective of the imaging conditions. No false detection occurs, and the quantification errors are lower than 1°. The proposed method can be deployed for automatic detection of loose bolts and quantification of rotation angles in bolted connections under different imaging conditions.</abstract><pub>Hindawi</pub><doi>10.1155/2023/8817058</doi><tpages>17</tpages><orcidid>https://orcid.org/0009-0005-6965-3354</orcidid><orcidid>https://orcid.org/0009-0005-4289-3809</orcidid><orcidid>https://orcid.org/0000-0002-2766-2077</orcidid><orcidid>https://orcid.org/0000-0002-7565-0548</orcidid><orcidid>https://orcid.org/0000-0002-9923-5066</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-2255
ispartof Structural control and health monitoring, 2023-05, Vol.2023, p.1-17
issn 1545-2255
1545-2263
language eng
recordid cdi_crossref_primary_10_1155_2023_8817058
source Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Alma/SFX Local Collection
title Computer Vision-Based Autonomous Method for Quantitative Detection of Loose Bolts in Bolted Connections of Steel Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_hinda&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20Vision-Based%20Autonomous%20Method%20for%20Quantitative%20Detection%20of%20Loose%20Bolts%20in%20Bolted%20Connections%20of%20Steel%20Structures&rft.jtitle=Structural%20control%20and%20health%20monitoring&rft.au=Lao,%20Wulve&rft.date=2023-05-25&rft.volume=2023&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1545-2255&rft.eissn=1545-2263&rft_id=info:doi/10.1155/2023/8817058&rft_dat=%3Ccrossref_hinda%3E10_1155_2023_8817058%3C/crossref_hinda%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true