Computer Vision-Based Autonomous Method for Quantitative Detection of Loose Bolts in Bolted Connections of Steel Structures
In this study, an autonomous computer vision-based method is presented to quantitatively detect loose bolts. The method integrates keypoint detection via YOLOv5 and PIPNet, distortion correction via perspective transformation, and rotation angles quantification via geometric imaging. Distortion corr...
Gespeichert in:
Veröffentlicht in: | Structural control and health monitoring 2023-05, Vol.2023, p.1-17 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Structural control and health monitoring |
container_volume | 2023 |
creator | Lao, Wulve Cui, Chuang Zhang, Dengke Zhang, Qinghua Bao, Yi |
description | In this study, an autonomous computer vision-based method is presented to quantitatively detect loose bolts. The method integrates keypoint detection via YOLOv5 and PIPNet, distortion correction via perspective transformation, and rotation angles quantification via geometric imaging. Distortion correction is incorporated to address skewed angles and improve the accuracy of rotation angles. A representative experiment on bolted connection of steel structures is conducted to evaluate the presented approach. The effects of the focal distance, skewed angle, and lighting conditions on the detection and quantification performance are evaluated by varying the imaging conditions. The results demonstrate that the presented approach automatically detects all bolts and their corners, irrespective of the imaging conditions. No false detection occurs, and the quantification errors are lower than 1°. The proposed method can be deployed for automatic detection of loose bolts and quantification of rotation angles in bolted connections under different imaging conditions. |
doi_str_mv | 10.1155/2023/8817058 |
format | Article |
fullrecord | <record><control><sourceid>crossref_hinda</sourceid><recordid>TN_cdi_crossref_primary_10_1155_2023_8817058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1155_2023_8817058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-71a4ea2b90aee45ac73e92ca354850a04c052d421f8bde7077dab13fba68b3003</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4wO8h1A_4sZdtqE8pCKEeGyjiTNRjVq7sh0Q4udJacWSzcxdnHsXh5Bzzq44V2okmJAjrXnBlD4gA65ylQkxlod_WaljchLjO2NiLLQakO_SrzddwkDfbLTeZTOI2NBpl7zza99F-oBp6Rva-kCfOnDJJkj2A-k1JjSpr1Df0oX3EenMr1Kk1v2GfqX0zu2YuIWeE-Kqv6EzqQsYT8lRC6uIZ_s_JK8385fyLls83t6X00VmJJukrOCQI4h6wgAxV2AKiRNhQKpcKwYsN0yJJhe81XWDBSuKBmou2xrGupaMySG53O2a4GMM2FabYNcQvirOqq24aiuu2ovr8YsdvrSugU_7P_0DRMBvnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computer Vision-Based Autonomous Method for Quantitative Detection of Loose Bolts in Bolted Connections of Steel Structures</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Lao, Wulve ; Cui, Chuang ; Zhang, Dengke ; Zhang, Qinghua ; Bao, Yi</creator><contributor>Chen, Lin</contributor><creatorcontrib>Lao, Wulve ; Cui, Chuang ; Zhang, Dengke ; Zhang, Qinghua ; Bao, Yi ; Chen, Lin</creatorcontrib><description>In this study, an autonomous computer vision-based method is presented to quantitatively detect loose bolts. The method integrates keypoint detection via YOLOv5 and PIPNet, distortion correction via perspective transformation, and rotation angles quantification via geometric imaging. Distortion correction is incorporated to address skewed angles and improve the accuracy of rotation angles. A representative experiment on bolted connection of steel structures is conducted to evaluate the presented approach. The effects of the focal distance, skewed angle, and lighting conditions on the detection and quantification performance are evaluated by varying the imaging conditions. The results demonstrate that the presented approach automatically detects all bolts and their corners, irrespective of the imaging conditions. No false detection occurs, and the quantification errors are lower than 1°. The proposed method can be deployed for automatic detection of loose bolts and quantification of rotation angles in bolted connections under different imaging conditions.</description><identifier>ISSN: 1545-2255</identifier><identifier>EISSN: 1545-2263</identifier><identifier>DOI: 10.1155/2023/8817058</identifier><language>eng</language><publisher>Hindawi</publisher><ispartof>Structural control and health monitoring, 2023-05, Vol.2023, p.1-17</ispartof><rights>Copyright © 2023 Wulve Lao et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-71a4ea2b90aee45ac73e92ca354850a04c052d421f8bde7077dab13fba68b3003</citedby><cites>FETCH-LOGICAL-c309t-71a4ea2b90aee45ac73e92ca354850a04c052d421f8bde7077dab13fba68b3003</cites><orcidid>0009-0005-6965-3354 ; 0009-0005-4289-3809 ; 0000-0002-2766-2077 ; 0000-0002-7565-0548 ; 0000-0002-9923-5066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,873,27901,27902</link.rule.ids></links><search><contributor>Chen, Lin</contributor><creatorcontrib>Lao, Wulve</creatorcontrib><creatorcontrib>Cui, Chuang</creatorcontrib><creatorcontrib>Zhang, Dengke</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Bao, Yi</creatorcontrib><title>Computer Vision-Based Autonomous Method for Quantitative Detection of Loose Bolts in Bolted Connections of Steel Structures</title><title>Structural control and health monitoring</title><description>In this study, an autonomous computer vision-based method is presented to quantitatively detect loose bolts. The method integrates keypoint detection via YOLOv5 and PIPNet, distortion correction via perspective transformation, and rotation angles quantification via geometric imaging. Distortion correction is incorporated to address skewed angles and improve the accuracy of rotation angles. A representative experiment on bolted connection of steel structures is conducted to evaluate the presented approach. The effects of the focal distance, skewed angle, and lighting conditions on the detection and quantification performance are evaluated by varying the imaging conditions. The results demonstrate that the presented approach automatically detects all bolts and their corners, irrespective of the imaging conditions. No false detection occurs, and the quantification errors are lower than 1°. The proposed method can be deployed for automatic detection of loose bolts and quantification of rotation angles in bolted connections under different imaging conditions.</description><issn>1545-2255</issn><issn>1545-2263</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kMtOwzAQRS0EEqWw4wO8h1A_4sZdtqE8pCKEeGyjiTNRjVq7sh0Q4udJacWSzcxdnHsXh5Bzzq44V2okmJAjrXnBlD4gA65ylQkxlod_WaljchLjO2NiLLQakO_SrzddwkDfbLTeZTOI2NBpl7zza99F-oBp6Rva-kCfOnDJJkj2A-k1JjSpr1Df0oX3EenMr1Kk1v2GfqX0zu2YuIWeE-Kqv6EzqQsYT8lRC6uIZ_s_JK8385fyLls83t6X00VmJJukrOCQI4h6wgAxV2AKiRNhQKpcKwYsN0yJJhe81XWDBSuKBmou2xrGupaMySG53O2a4GMM2FabYNcQvirOqq24aiuu2ovr8YsdvrSugU_7P_0DRMBvnw</recordid><startdate>20230525</startdate><enddate>20230525</enddate><creator>Lao, Wulve</creator><creator>Cui, Chuang</creator><creator>Zhang, Dengke</creator><creator>Zhang, Qinghua</creator><creator>Bao, Yi</creator><general>Hindawi</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0005-6965-3354</orcidid><orcidid>https://orcid.org/0009-0005-4289-3809</orcidid><orcidid>https://orcid.org/0000-0002-2766-2077</orcidid><orcidid>https://orcid.org/0000-0002-7565-0548</orcidid><orcidid>https://orcid.org/0000-0002-9923-5066</orcidid></search><sort><creationdate>20230525</creationdate><title>Computer Vision-Based Autonomous Method for Quantitative Detection of Loose Bolts in Bolted Connections of Steel Structures</title><author>Lao, Wulve ; Cui, Chuang ; Zhang, Dengke ; Zhang, Qinghua ; Bao, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-71a4ea2b90aee45ac73e92ca354850a04c052d421f8bde7077dab13fba68b3003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lao, Wulve</creatorcontrib><creatorcontrib>Cui, Chuang</creatorcontrib><creatorcontrib>Zhang, Dengke</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Bao, Yi</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><jtitle>Structural control and health monitoring</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lao, Wulve</au><au>Cui, Chuang</au><au>Zhang, Dengke</au><au>Zhang, Qinghua</au><au>Bao, Yi</au><au>Chen, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer Vision-Based Autonomous Method for Quantitative Detection of Loose Bolts in Bolted Connections of Steel Structures</atitle><jtitle>Structural control and health monitoring</jtitle><date>2023-05-25</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1545-2255</issn><eissn>1545-2263</eissn><abstract>In this study, an autonomous computer vision-based method is presented to quantitatively detect loose bolts. The method integrates keypoint detection via YOLOv5 and PIPNet, distortion correction via perspective transformation, and rotation angles quantification via geometric imaging. Distortion correction is incorporated to address skewed angles and improve the accuracy of rotation angles. A representative experiment on bolted connection of steel structures is conducted to evaluate the presented approach. The effects of the focal distance, skewed angle, and lighting conditions on the detection and quantification performance are evaluated by varying the imaging conditions. The results demonstrate that the presented approach automatically detects all bolts and their corners, irrespective of the imaging conditions. No false detection occurs, and the quantification errors are lower than 1°. The proposed method can be deployed for automatic detection of loose bolts and quantification of rotation angles in bolted connections under different imaging conditions.</abstract><pub>Hindawi</pub><doi>10.1155/2023/8817058</doi><tpages>17</tpages><orcidid>https://orcid.org/0009-0005-6965-3354</orcidid><orcidid>https://orcid.org/0009-0005-4289-3809</orcidid><orcidid>https://orcid.org/0000-0002-2766-2077</orcidid><orcidid>https://orcid.org/0000-0002-7565-0548</orcidid><orcidid>https://orcid.org/0000-0002-9923-5066</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-2255 |
ispartof | Structural control and health monitoring, 2023-05, Vol.2023, p.1-17 |
issn | 1545-2255 1545-2263 |
language | eng |
recordid | cdi_crossref_primary_10_1155_2023_8817058 |
source | Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Alma/SFX Local Collection |
title | Computer Vision-Based Autonomous Method for Quantitative Detection of Loose Bolts in Bolted Connections of Steel Structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_hinda&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20Vision-Based%20Autonomous%20Method%20for%20Quantitative%20Detection%20of%20Loose%20Bolts%20in%20Bolted%20Connections%20of%20Steel%20Structures&rft.jtitle=Structural%20control%20and%20health%20monitoring&rft.au=Lao,%20Wulve&rft.date=2023-05-25&rft.volume=2023&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1545-2255&rft.eissn=1545-2263&rft_id=info:doi/10.1155/2023/8817058&rft_dat=%3Ccrossref_hinda%3E10_1155_2023_8817058%3C/crossref_hinda%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |