Two-Level Multimodal Fusion for Sentiment Analysis in Public Security

Large amounts of data are widely stored in cyberspace. Not only can they bring much convenience to people’s lives and work, but they can also assist the work in the information security field, such as microexpression recognition and sentiment analysis in the criminal investigation. Thus, it is of gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Security and communication networks 2021, Vol.2021, p.1-10, Article 6662337
Hauptverfasser: Sun, Jianguo, Yin, Hanqi, Tian, Ye, Wu, Junpeng, Shen, Linshan, Chen, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title Security and communication networks
container_volume 2021
creator Sun, Jianguo
Yin, Hanqi
Tian, Ye
Wu, Junpeng
Shen, Linshan
Chen, Lei
description Large amounts of data are widely stored in cyberspace. Not only can they bring much convenience to people’s lives and work, but they can also assist the work in the information security field, such as microexpression recognition and sentiment analysis in the criminal investigation. Thus, it is of great significance to recognize and analyze the sentiment information, which is usually described by different modalities. Due to the correlation among different modalities data, multimodal can provide more comprehensive and robust information than unimodal in data analysis tasks. The complementary information from different modalities can be obtained by multimodal fusion methods. These approaches can process multimodal data through fusion algorithms and ensure the accuracy of the information used for subsequent classification or prediction tasks. In this study, a two-level multimodal fusion (TlMF) method with both data-level and decision-level fusion is proposed to achieve the sentiment analysis task. In the data-level fusion stage, a tensor fusion network is utilized to obtain the text-audio and text-video embeddings by fusing the text with audio and video features, respectively. During the decision-level fusion stage, the soft fusion method is adopted to fuse the classification or prediction results of the upstream classifiers, so that the final classification or prediction results can be as accurate as possible. The proposed method is tested on the CMU-MOSI, CMU-MOSEI, and IEMOCAP datasets, and the empirical results and ablation studies confirm the effectiveness of TlMF in capturing useful information from all the test modalities.
doi_str_mv 10.1155/2021/6662337
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1155_2021_6662337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540409319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-ccd2bd15941714a9c472805736b07aa2ddfc6df2cf6de677c6e2399f796c192c3</originalsourceid><addsrcrecordid>eNqNkMtKAzEUhoMoWKs7H2DApY7NbZJmWYZWhYqCdT1kcsGU6aQmM5a-fVNa6k7cJIeTL8l_PgBuEXxEqChGGGI0YoxhQvgZGCBBRA4RxuenGtFLcBXjEkKGKKcDMF1sfD43P6bJXvumcyuvZZPN-uh8m1kfsg_Tpm5askkrm210MXNt9t7XjVPpUPXBddtrcGFlE83NcR-Cz9l0UT7n87enl3Iyz1VK1OVKaVxrVAiKOKJSKMrxGBacsBpyKbHWVjFtsbJMG8a5YgYTISwXTCGBFRmCu8O76-C_exO7aun7kHLFChcUUihIGnQIHg6UCj7GYGy1Dm4lw7ZCsNqLqvaiqqOohN8f8I2pvY3KmVaZ0xWYVDGK6JimCpJEj_9Pl66TXTJZ-r7tfj_6cq2WG_d3rB2bDYeF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540409319</pqid></control><display><type>article</type><title>Two-Level Multimodal Fusion for Sentiment Analysis in Public Security</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Sun, Jianguo ; Yin, Hanqi ; Tian, Ye ; Wu, Junpeng ; Shen, Linshan ; Chen, Lei</creator><contributor>Megías, David ; David Megías</contributor><creatorcontrib>Sun, Jianguo ; Yin, Hanqi ; Tian, Ye ; Wu, Junpeng ; Shen, Linshan ; Chen, Lei ; Megías, David ; David Megías</creatorcontrib><description>Large amounts of data are widely stored in cyberspace. Not only can they bring much convenience to people’s lives and work, but they can also assist the work in the information security field, such as microexpression recognition and sentiment analysis in the criminal investigation. Thus, it is of great significance to recognize and analyze the sentiment information, which is usually described by different modalities. Due to the correlation among different modalities data, multimodal can provide more comprehensive and robust information than unimodal in data analysis tasks. The complementary information from different modalities can be obtained by multimodal fusion methods. These approaches can process multimodal data through fusion algorithms and ensure the accuracy of the information used for subsequent classification or prediction tasks. In this study, a two-level multimodal fusion (TlMF) method with both data-level and decision-level fusion is proposed to achieve the sentiment analysis task. In the data-level fusion stage, a tensor fusion network is utilized to obtain the text-audio and text-video embeddings by fusing the text with audio and video features, respectively. During the decision-level fusion stage, the soft fusion method is adopted to fuse the classification or prediction results of the upstream classifiers, so that the final classification or prediction results can be as accurate as possible. The proposed method is tested on the CMU-MOSI, CMU-MOSEI, and IEMOCAP datasets, and the empirical results and ablation studies confirm the effectiveness of TlMF in capturing useful information from all the test modalities.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2021/6662337</identifier><language>eng</language><publisher>LONDON: Hindawi</publisher><subject>Ablation ; Algorithms ; Artificial intelligence ; Classification ; Computer Science ; Computer Science, Information Systems ; Crime ; Data analysis ; Data mining ; Decision analysis ; Empirical analysis ; Internet ; Machine learning ; Medical diagnosis ; Medical research ; Neural networks ; Performance evaluation ; Science &amp; Technology ; Security ; Sentiment analysis ; Technology ; Telecommunications ; Tensors ; Wavelet transforms</subject><ispartof>Security and communication networks, 2021, Vol.2021, p.1-10, Article 6662337</ispartof><rights>Copyright © 2021 Jianguo Sun et al.</rights><rights>Copyright © 2021 Jianguo Sun et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000664148400003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c337t-ccd2bd15941714a9c472805736b07aa2ddfc6df2cf6de677c6e2399f796c192c3</citedby><cites>FETCH-LOGICAL-c337t-ccd2bd15941714a9c472805736b07aa2ddfc6df2cf6de677c6e2399f796c192c3</cites><orcidid>0000-0002-1396-6299 ; 0000-0002-3871-1989 ; 0000-0002-6656-2191 ; 0000-0003-0608-8544 ; 0000-0001-7377-3483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,4025,27928,27929,27930,39263</link.rule.ids></links><search><contributor>Megías, David</contributor><contributor>David Megías</contributor><creatorcontrib>Sun, Jianguo</creatorcontrib><creatorcontrib>Yin, Hanqi</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Wu, Junpeng</creatorcontrib><creatorcontrib>Shen, Linshan</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><title>Two-Level Multimodal Fusion for Sentiment Analysis in Public Security</title><title>Security and communication networks</title><addtitle>SECUR COMMUN NETW</addtitle><description>Large amounts of data are widely stored in cyberspace. Not only can they bring much convenience to people’s lives and work, but they can also assist the work in the information security field, such as microexpression recognition and sentiment analysis in the criminal investigation. Thus, it is of great significance to recognize and analyze the sentiment information, which is usually described by different modalities. Due to the correlation among different modalities data, multimodal can provide more comprehensive and robust information than unimodal in data analysis tasks. The complementary information from different modalities can be obtained by multimodal fusion methods. These approaches can process multimodal data through fusion algorithms and ensure the accuracy of the information used for subsequent classification or prediction tasks. In this study, a two-level multimodal fusion (TlMF) method with both data-level and decision-level fusion is proposed to achieve the sentiment analysis task. In the data-level fusion stage, a tensor fusion network is utilized to obtain the text-audio and text-video embeddings by fusing the text with audio and video features, respectively. During the decision-level fusion stage, the soft fusion method is adopted to fuse the classification or prediction results of the upstream classifiers, so that the final classification or prediction results can be as accurate as possible. The proposed method is tested on the CMU-MOSI, CMU-MOSEI, and IEMOCAP datasets, and the empirical results and ablation studies confirm the effectiveness of TlMF in capturing useful information from all the test modalities.</description><subject>Ablation</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Crime</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Decision analysis</subject><subject>Empirical analysis</subject><subject>Internet</subject><subject>Machine learning</subject><subject>Medical diagnosis</subject><subject>Medical research</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Science &amp; Technology</subject><subject>Security</subject><subject>Sentiment analysis</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>Tensors</subject><subject>Wavelet transforms</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkMtKAzEUhoMoWKs7H2DApY7NbZJmWYZWhYqCdT1kcsGU6aQmM5a-fVNa6k7cJIeTL8l_PgBuEXxEqChGGGI0YoxhQvgZGCBBRA4RxuenGtFLcBXjEkKGKKcDMF1sfD43P6bJXvumcyuvZZPN-uh8m1kfsg_Tpm5askkrm210MXNt9t7XjVPpUPXBddtrcGFlE83NcR-Cz9l0UT7n87enl3Iyz1VK1OVKaVxrVAiKOKJSKMrxGBacsBpyKbHWVjFtsbJMG8a5YgYTISwXTCGBFRmCu8O76-C_exO7aun7kHLFChcUUihIGnQIHg6UCj7GYGy1Dm4lw7ZCsNqLqvaiqqOohN8f8I2pvY3KmVaZ0xWYVDGK6JimCpJEj_9Pl66TXTJZ-r7tfj_6cq2WG_d3rB2bDYeF</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Sun, Jianguo</creator><creator>Yin, Hanqi</creator><creator>Tian, Ye</creator><creator>Wu, Junpeng</creator><creator>Shen, Linshan</creator><creator>Chen, Lei</creator><general>Hindawi</general><general>Wiley-Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-1396-6299</orcidid><orcidid>https://orcid.org/0000-0002-3871-1989</orcidid><orcidid>https://orcid.org/0000-0002-6656-2191</orcidid><orcidid>https://orcid.org/0000-0003-0608-8544</orcidid><orcidid>https://orcid.org/0000-0001-7377-3483</orcidid></search><sort><creationdate>2021</creationdate><title>Two-Level Multimodal Fusion for Sentiment Analysis in Public Security</title><author>Sun, Jianguo ; Yin, Hanqi ; Tian, Ye ; Wu, Junpeng ; Shen, Linshan ; Chen, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-ccd2bd15941714a9c472805736b07aa2ddfc6df2cf6de677c6e2399f796c192c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Crime</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Decision analysis</topic><topic>Empirical analysis</topic><topic>Internet</topic><topic>Machine learning</topic><topic>Medical diagnosis</topic><topic>Medical research</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Science &amp; Technology</topic><topic>Security</topic><topic>Sentiment analysis</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>Tensors</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jianguo</creatorcontrib><creatorcontrib>Yin, Hanqi</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Wu, Junpeng</creatorcontrib><creatorcontrib>Shen, Linshan</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jianguo</au><au>Yin, Hanqi</au><au>Tian, Ye</au><au>Wu, Junpeng</au><au>Shen, Linshan</au><au>Chen, Lei</au><au>Megías, David</au><au>David Megías</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Level Multimodal Fusion for Sentiment Analysis in Public Security</atitle><jtitle>Security and communication networks</jtitle><stitle>SECUR COMMUN NETW</stitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><artnum>6662337</artnum><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>Large amounts of data are widely stored in cyberspace. Not only can they bring much convenience to people’s lives and work, but they can also assist the work in the information security field, such as microexpression recognition and sentiment analysis in the criminal investigation. Thus, it is of great significance to recognize and analyze the sentiment information, which is usually described by different modalities. Due to the correlation among different modalities data, multimodal can provide more comprehensive and robust information than unimodal in data analysis tasks. The complementary information from different modalities can be obtained by multimodal fusion methods. These approaches can process multimodal data through fusion algorithms and ensure the accuracy of the information used for subsequent classification or prediction tasks. In this study, a two-level multimodal fusion (TlMF) method with both data-level and decision-level fusion is proposed to achieve the sentiment analysis task. In the data-level fusion stage, a tensor fusion network is utilized to obtain the text-audio and text-video embeddings by fusing the text with audio and video features, respectively. During the decision-level fusion stage, the soft fusion method is adopted to fuse the classification or prediction results of the upstream classifiers, so that the final classification or prediction results can be as accurate as possible. The proposed method is tested on the CMU-MOSI, CMU-MOSEI, and IEMOCAP datasets, and the empirical results and ablation studies confirm the effectiveness of TlMF in capturing useful information from all the test modalities.</abstract><cop>LONDON</cop><pub>Hindawi</pub><doi>10.1155/2021/6662337</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1396-6299</orcidid><orcidid>https://orcid.org/0000-0002-3871-1989</orcidid><orcidid>https://orcid.org/0000-0002-6656-2191</orcidid><orcidid>https://orcid.org/0000-0003-0608-8544</orcidid><orcidid>https://orcid.org/0000-0001-7377-3483</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-0114
ispartof Security and communication networks, 2021, Vol.2021, p.1-10, Article 6662337
issn 1939-0114
1939-0122
language eng
recordid cdi_crossref_primary_10_1155_2021_6662337
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Ablation
Algorithms
Artificial intelligence
Classification
Computer Science
Computer Science, Information Systems
Crime
Data analysis
Data mining
Decision analysis
Empirical analysis
Internet
Machine learning
Medical diagnosis
Medical research
Neural networks
Performance evaluation
Science & Technology
Security
Sentiment analysis
Technology
Telecommunications
Tensors
Wavelet transforms
title Two-Level Multimodal Fusion for Sentiment Analysis in Public Security
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T01%3A57%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Level%20Multimodal%20Fusion%20for%20Sentiment%20Analysis%20in%20Public%20Security&rft.jtitle=Security%20and%20communication%20networks&rft.au=Sun,%20Jianguo&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.artnum=6662337&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2021/6662337&rft_dat=%3Cproquest_cross%3E2540409319%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540409319&rft_id=info:pmid/&rfr_iscdi=true