Two-Level Multimodal Fusion for Sentiment Analysis in Public Security
Large amounts of data are widely stored in cyberspace. Not only can they bring much convenience to people’s lives and work, but they can also assist the work in the information security field, such as microexpression recognition and sentiment analysis in the criminal investigation. Thus, it is of gr...
Gespeichert in:
Veröffentlicht in: | Security and communication networks 2021, Vol.2021, p.1-10, Article 6662337 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Security and communication networks |
container_volume | 2021 |
creator | Sun, Jianguo Yin, Hanqi Tian, Ye Wu, Junpeng Shen, Linshan Chen, Lei |
description | Large amounts of data are widely stored in cyberspace. Not only can they bring much convenience to people’s lives and work, but they can also assist the work in the information security field, such as microexpression recognition and sentiment analysis in the criminal investigation. Thus, it is of great significance to recognize and analyze the sentiment information, which is usually described by different modalities. Due to the correlation among different modalities data, multimodal can provide more comprehensive and robust information than unimodal in data analysis tasks. The complementary information from different modalities can be obtained by multimodal fusion methods. These approaches can process multimodal data through fusion algorithms and ensure the accuracy of the information used for subsequent classification or prediction tasks. In this study, a two-level multimodal fusion (TlMF) method with both data-level and decision-level fusion is proposed to achieve the sentiment analysis task. In the data-level fusion stage, a tensor fusion network is utilized to obtain the text-audio and text-video embeddings by fusing the text with audio and video features, respectively. During the decision-level fusion stage, the soft fusion method is adopted to fuse the classification or prediction results of the upstream classifiers, so that the final classification or prediction results can be as accurate as possible. The proposed method is tested on the CMU-MOSI, CMU-MOSEI, and IEMOCAP datasets, and the empirical results and ablation studies confirm the effectiveness of TlMF in capturing useful information from all the test modalities. |
doi_str_mv | 10.1155/2021/6662337 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1155_2021_6662337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540409319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-ccd2bd15941714a9c472805736b07aa2ddfc6df2cf6de677c6e2399f796c192c3</originalsourceid><addsrcrecordid>eNqNkMtKAzEUhoMoWKs7H2DApY7NbZJmWYZWhYqCdT1kcsGU6aQmM5a-fVNa6k7cJIeTL8l_PgBuEXxEqChGGGI0YoxhQvgZGCBBRA4RxuenGtFLcBXjEkKGKKcDMF1sfD43P6bJXvumcyuvZZPN-uh8m1kfsg_Tpm5askkrm210MXNt9t7XjVPpUPXBddtrcGFlE83NcR-Cz9l0UT7n87enl3Iyz1VK1OVKaVxrVAiKOKJSKMrxGBacsBpyKbHWVjFtsbJMG8a5YgYTISwXTCGBFRmCu8O76-C_exO7aun7kHLFChcUUihIGnQIHg6UCj7GYGy1Dm4lw7ZCsNqLqvaiqqOohN8f8I2pvY3KmVaZ0xWYVDGK6JimCpJEj_9Pl66TXTJZ-r7tfj_6cq2WG_d3rB2bDYeF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540409319</pqid></control><display><type>article</type><title>Two-Level Multimodal Fusion for Sentiment Analysis in Public Security</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Sun, Jianguo ; Yin, Hanqi ; Tian, Ye ; Wu, Junpeng ; Shen, Linshan ; Chen, Lei</creator><contributor>Megías, David ; David Megías</contributor><creatorcontrib>Sun, Jianguo ; Yin, Hanqi ; Tian, Ye ; Wu, Junpeng ; Shen, Linshan ; Chen, Lei ; Megías, David ; David Megías</creatorcontrib><description>Large amounts of data are widely stored in cyberspace. Not only can they bring much convenience to people’s lives and work, but they can also assist the work in the information security field, such as microexpression recognition and sentiment analysis in the criminal investigation. Thus, it is of great significance to recognize and analyze the sentiment information, which is usually described by different modalities. Due to the correlation among different modalities data, multimodal can provide more comprehensive and robust information than unimodal in data analysis tasks. The complementary information from different modalities can be obtained by multimodal fusion methods. These approaches can process multimodal data through fusion algorithms and ensure the accuracy of the information used for subsequent classification or prediction tasks. In this study, a two-level multimodal fusion (TlMF) method with both data-level and decision-level fusion is proposed to achieve the sentiment analysis task. In the data-level fusion stage, a tensor fusion network is utilized to obtain the text-audio and text-video embeddings by fusing the text with audio and video features, respectively. During the decision-level fusion stage, the soft fusion method is adopted to fuse the classification or prediction results of the upstream classifiers, so that the final classification or prediction results can be as accurate as possible. The proposed method is tested on the CMU-MOSI, CMU-MOSEI, and IEMOCAP datasets, and the empirical results and ablation studies confirm the effectiveness of TlMF in capturing useful information from all the test modalities.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2021/6662337</identifier><language>eng</language><publisher>LONDON: Hindawi</publisher><subject>Ablation ; Algorithms ; Artificial intelligence ; Classification ; Computer Science ; Computer Science, Information Systems ; Crime ; Data analysis ; Data mining ; Decision analysis ; Empirical analysis ; Internet ; Machine learning ; Medical diagnosis ; Medical research ; Neural networks ; Performance evaluation ; Science & Technology ; Security ; Sentiment analysis ; Technology ; Telecommunications ; Tensors ; Wavelet transforms</subject><ispartof>Security and communication networks, 2021, Vol.2021, p.1-10, Article 6662337</ispartof><rights>Copyright © 2021 Jianguo Sun et al.</rights><rights>Copyright © 2021 Jianguo Sun et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000664148400003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c337t-ccd2bd15941714a9c472805736b07aa2ddfc6df2cf6de677c6e2399f796c192c3</citedby><cites>FETCH-LOGICAL-c337t-ccd2bd15941714a9c472805736b07aa2ddfc6df2cf6de677c6e2399f796c192c3</cites><orcidid>0000-0002-1396-6299 ; 0000-0002-3871-1989 ; 0000-0002-6656-2191 ; 0000-0003-0608-8544 ; 0000-0001-7377-3483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,4025,27928,27929,27930,39263</link.rule.ids></links><search><contributor>Megías, David</contributor><contributor>David Megías</contributor><creatorcontrib>Sun, Jianguo</creatorcontrib><creatorcontrib>Yin, Hanqi</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Wu, Junpeng</creatorcontrib><creatorcontrib>Shen, Linshan</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><title>Two-Level Multimodal Fusion for Sentiment Analysis in Public Security</title><title>Security and communication networks</title><addtitle>SECUR COMMUN NETW</addtitle><description>Large amounts of data are widely stored in cyberspace. Not only can they bring much convenience to people’s lives and work, but they can also assist the work in the information security field, such as microexpression recognition and sentiment analysis in the criminal investigation. Thus, it is of great significance to recognize and analyze the sentiment information, which is usually described by different modalities. Due to the correlation among different modalities data, multimodal can provide more comprehensive and robust information than unimodal in data analysis tasks. The complementary information from different modalities can be obtained by multimodal fusion methods. These approaches can process multimodal data through fusion algorithms and ensure the accuracy of the information used for subsequent classification or prediction tasks. In this study, a two-level multimodal fusion (TlMF) method with both data-level and decision-level fusion is proposed to achieve the sentiment analysis task. In the data-level fusion stage, a tensor fusion network is utilized to obtain the text-audio and text-video embeddings by fusing the text with audio and video features, respectively. During the decision-level fusion stage, the soft fusion method is adopted to fuse the classification or prediction results of the upstream classifiers, so that the final classification or prediction results can be as accurate as possible. The proposed method is tested on the CMU-MOSI, CMU-MOSEI, and IEMOCAP datasets, and the empirical results and ablation studies confirm the effectiveness of TlMF in capturing useful information from all the test modalities.</description><subject>Ablation</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Crime</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Decision analysis</subject><subject>Empirical analysis</subject><subject>Internet</subject><subject>Machine learning</subject><subject>Medical diagnosis</subject><subject>Medical research</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Science & Technology</subject><subject>Security</subject><subject>Sentiment analysis</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>Tensors</subject><subject>Wavelet transforms</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkMtKAzEUhoMoWKs7H2DApY7NbZJmWYZWhYqCdT1kcsGU6aQmM5a-fVNa6k7cJIeTL8l_PgBuEXxEqChGGGI0YoxhQvgZGCBBRA4RxuenGtFLcBXjEkKGKKcDMF1sfD43P6bJXvumcyuvZZPN-uh8m1kfsg_Tpm5askkrm210MXNt9t7XjVPpUPXBddtrcGFlE83NcR-Cz9l0UT7n87enl3Iyz1VK1OVKaVxrVAiKOKJSKMrxGBacsBpyKbHWVjFtsbJMG8a5YgYTISwXTCGBFRmCu8O76-C_exO7aun7kHLFChcUUihIGnQIHg6UCj7GYGy1Dm4lw7ZCsNqLqvaiqqOohN8f8I2pvY3KmVaZ0xWYVDGK6JimCpJEj_9Pl66TXTJZ-r7tfj_6cq2WG_d3rB2bDYeF</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Sun, Jianguo</creator><creator>Yin, Hanqi</creator><creator>Tian, Ye</creator><creator>Wu, Junpeng</creator><creator>Shen, Linshan</creator><creator>Chen, Lei</creator><general>Hindawi</general><general>Wiley-Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-1396-6299</orcidid><orcidid>https://orcid.org/0000-0002-3871-1989</orcidid><orcidid>https://orcid.org/0000-0002-6656-2191</orcidid><orcidid>https://orcid.org/0000-0003-0608-8544</orcidid><orcidid>https://orcid.org/0000-0001-7377-3483</orcidid></search><sort><creationdate>2021</creationdate><title>Two-Level Multimodal Fusion for Sentiment Analysis in Public Security</title><author>Sun, Jianguo ; Yin, Hanqi ; Tian, Ye ; Wu, Junpeng ; Shen, Linshan ; Chen, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-ccd2bd15941714a9c472805736b07aa2ddfc6df2cf6de677c6e2399f796c192c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Crime</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Decision analysis</topic><topic>Empirical analysis</topic><topic>Internet</topic><topic>Machine learning</topic><topic>Medical diagnosis</topic><topic>Medical research</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Science & Technology</topic><topic>Security</topic><topic>Sentiment analysis</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>Tensors</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jianguo</creatorcontrib><creatorcontrib>Yin, Hanqi</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Wu, Junpeng</creatorcontrib><creatorcontrib>Shen, Linshan</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jianguo</au><au>Yin, Hanqi</au><au>Tian, Ye</au><au>Wu, Junpeng</au><au>Shen, Linshan</au><au>Chen, Lei</au><au>Megías, David</au><au>David Megías</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Level Multimodal Fusion for Sentiment Analysis in Public Security</atitle><jtitle>Security and communication networks</jtitle><stitle>SECUR COMMUN NETW</stitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><artnum>6662337</artnum><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>Large amounts of data are widely stored in cyberspace. Not only can they bring much convenience to people’s lives and work, but they can also assist the work in the information security field, such as microexpression recognition and sentiment analysis in the criminal investigation. Thus, it is of great significance to recognize and analyze the sentiment information, which is usually described by different modalities. Due to the correlation among different modalities data, multimodal can provide more comprehensive and robust information than unimodal in data analysis tasks. The complementary information from different modalities can be obtained by multimodal fusion methods. These approaches can process multimodal data through fusion algorithms and ensure the accuracy of the information used for subsequent classification or prediction tasks. In this study, a two-level multimodal fusion (TlMF) method with both data-level and decision-level fusion is proposed to achieve the sentiment analysis task. In the data-level fusion stage, a tensor fusion network is utilized to obtain the text-audio and text-video embeddings by fusing the text with audio and video features, respectively. During the decision-level fusion stage, the soft fusion method is adopted to fuse the classification or prediction results of the upstream classifiers, so that the final classification or prediction results can be as accurate as possible. The proposed method is tested on the CMU-MOSI, CMU-MOSEI, and IEMOCAP datasets, and the empirical results and ablation studies confirm the effectiveness of TlMF in capturing useful information from all the test modalities.</abstract><cop>LONDON</cop><pub>Hindawi</pub><doi>10.1155/2021/6662337</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1396-6299</orcidid><orcidid>https://orcid.org/0000-0002-3871-1989</orcidid><orcidid>https://orcid.org/0000-0002-6656-2191</orcidid><orcidid>https://orcid.org/0000-0003-0608-8544</orcidid><orcidid>https://orcid.org/0000-0001-7377-3483</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-0114 |
ispartof | Security and communication networks, 2021, Vol.2021, p.1-10, Article 6662337 |
issn | 1939-0114 1939-0122 |
language | eng |
recordid | cdi_crossref_primary_10_1155_2021_6662337 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | Ablation Algorithms Artificial intelligence Classification Computer Science Computer Science, Information Systems Crime Data analysis Data mining Decision analysis Empirical analysis Internet Machine learning Medical diagnosis Medical research Neural networks Performance evaluation Science & Technology Security Sentiment analysis Technology Telecommunications Tensors Wavelet transforms |
title | Two-Level Multimodal Fusion for Sentiment Analysis in Public Security |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T01%3A57%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Level%20Multimodal%20Fusion%20for%20Sentiment%20Analysis%20in%20Public%20Security&rft.jtitle=Security%20and%20communication%20networks&rft.au=Sun,%20Jianguo&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.artnum=6662337&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2021/6662337&rft_dat=%3Cproquest_cross%3E2540409319%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540409319&rft_id=info:pmid/&rfr_iscdi=true |