MiR-126-HMGB1-HIF-1 Axis Regulates Endothelial Cell Inflammation during Exposure to Hypoxia-Acidosis

Crosstalk between molecular regulators miR-126, hypoxia-inducible factor 1-alpha (HIF-1-α), and high-mobility group box-1 (HMGB1) contributes to the regulation of inflammation and angiogenesis in multiple physiological and pathophysiological settings. Here, we present evidence of an overriding role...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Disease markers 2021, Vol.2021, p.4933194-14
Hauptverfasser: Liu, Jinxue, Wei, Eileen, Wei, Jianqin, Zhou, Wei, Webster, Keith A., Zhang, Bin, Li, Dong, Zhang, Gaoxing, Wei, Yidong, Long, Yusheng, Qi, Xiuyu, Zhang, Qianhuan, Xu, Dingli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 4933194
container_title Disease markers
container_volume 2021
creator Liu, Jinxue
Wei, Eileen
Wei, Jianqin
Zhou, Wei
Webster, Keith A.
Zhang, Bin
Li, Dong
Zhang, Gaoxing
Wei, Yidong
Long, Yusheng
Qi, Xiuyu
Zhang, Qianhuan
Xu, Dingli
description Crosstalk between molecular regulators miR-126, hypoxia-inducible factor 1-alpha (HIF-1-α), and high-mobility group box-1 (HMGB1) contributes to the regulation of inflammation and angiogenesis in multiple physiological and pathophysiological settings. Here, we present evidence of an overriding role for miR-126 in the regulation of HMGB1 and its downstream proinflammatory effectors in endothelial cells subjected to hypoxia with concurrent acidosis (H/A). Methods. Primary mouse endothelial cells (PMEC) were exposed to hypoxia or H/A to simulate short or chronic low-flow ischemia, respectively. RT-qPCR quantified mRNA transcripts, and proteins were measured by western blot. ROS were quantified by fluorogenic ELISA and luciferase reporter assays employed to confirm an active miR-126 target in the HMGB1 3′UTR. Results. Enhanced expression of miR-126 in PMECs cultured under neutral hypoxia was suppressed under H/A, whereas the HMGB1 expression increased sequentially under both conditions. Enhanced expression of HMGB1 and downstream inflammation markers was blocked by the premiR-126 overexpression and optimized by antagomiR. Compared with neutral hypoxia, H/A suppressed the HIF-1α expression independently of miR-126. The results show that HMGB1 and downstream effectors are optimally induced by H/A relative to neutral hypoxia via crosstalk between hypoxia signaling, miR-126, and HIF-1α, whereas B-cell lymphoma 2(Bcl2), a HIF-1α, and miR-126 regulated gene expressed optimally under neutral hypoxia. Conclusion. Inflammatory responses of ECs to H/A are dynamically regulated by the combined actions of hypoxia, miR-126, and HIF-1α on the master regulator HMGB1. The findings may be relevant to vascular diseases including atherosclerotic occlusion and interiors of plaque where coexisting hypoxia and acidosis promote inflammation as a defining etiology.
doi_str_mv 10.1155/2021/4933194
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_crossref_primary_10_1155_2021_4933194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2615921157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-72a2f8bed8a75093ff8aeb1baa96e0a07d23c0d5469bc030e6bdb5c5b380eca3</originalsourceid><addsrcrecordid>eNp9kU1vEzEURS0EoqGwY40ssUEqpv4cezaVQpQ2kVohVd1bHtuTuJqxw3gG0n9fl4QKWLB6i3d09O67ALwn-AshQpxTTMk5rxkjNX8BZkRJgVTF8Esww1QqhCnHJ-BNzvcYE1rz-jU4YbyWmAk5A-4m3CJCK7S6ufpK0Gp9iQic70OGt34zdWb0GS6jS-PWd8F0cOG7Dq5j25m-N2NIEbppCHEDl_tdytPg4Zjg6mGX9sGguQ0u5ZDfglet6bJ_d5yn4O5yebdYoetvV-vF_BpZQfiIJDW0VY13ykiBa9a2yviGNMbUlccGS0eZxU7wqm4sZthXjWuEFQ1T2FvDTsHFQbubmt476-M4mE7vhtCb4UEnE_Tfmxi2epN-aCUJZ4wXwaejYEjfJ59H3YdsS2ITfZqyphURNS1flwX9-A96n6YhlnS_KFWV-0WhPh8oO6ScB98-H0OwfmpPP7Wnj-0V_MOfAZ7h33UV4OwAbEN05mf4v-4RVVuhXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615860935</pqid></control><display><type>article</type><title>MiR-126-HMGB1-HIF-1 Axis Regulates Endothelial Cell Inflammation during Exposure to Hypoxia-Acidosis</title><source>MEDLINE</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Liu, Jinxue ; Wei, Eileen ; Wei, Jianqin ; Zhou, Wei ; Webster, Keith A. ; Zhang, Bin ; Li, Dong ; Zhang, Gaoxing ; Wei, Yidong ; Long, Yusheng ; Qi, Xiuyu ; Zhang, Qianhuan ; Xu, Dingli</creator><contributor>Su, Ting ; Ting Su</contributor><creatorcontrib>Liu, Jinxue ; Wei, Eileen ; Wei, Jianqin ; Zhou, Wei ; Webster, Keith A. ; Zhang, Bin ; Li, Dong ; Zhang, Gaoxing ; Wei, Yidong ; Long, Yusheng ; Qi, Xiuyu ; Zhang, Qianhuan ; Xu, Dingli ; Su, Ting ; Ting Su</creatorcontrib><description>Crosstalk between molecular regulators miR-126, hypoxia-inducible factor 1-alpha (HIF-1-α), and high-mobility group box-1 (HMGB1) contributes to the regulation of inflammation and angiogenesis in multiple physiological and pathophysiological settings. Here, we present evidence of an overriding role for miR-126 in the regulation of HMGB1 and its downstream proinflammatory effectors in endothelial cells subjected to hypoxia with concurrent acidosis (H/A). Methods. Primary mouse endothelial cells (PMEC) were exposed to hypoxia or H/A to simulate short or chronic low-flow ischemia, respectively. RT-qPCR quantified mRNA transcripts, and proteins were measured by western blot. ROS were quantified by fluorogenic ELISA and luciferase reporter assays employed to confirm an active miR-126 target in the HMGB1 3′UTR. Results. Enhanced expression of miR-126 in PMECs cultured under neutral hypoxia was suppressed under H/A, whereas the HMGB1 expression increased sequentially under both conditions. Enhanced expression of HMGB1 and downstream inflammation markers was blocked by the premiR-126 overexpression and optimized by antagomiR. Compared with neutral hypoxia, H/A suppressed the HIF-1α expression independently of miR-126. The results show that HMGB1 and downstream effectors are optimally induced by H/A relative to neutral hypoxia via crosstalk between hypoxia signaling, miR-126, and HIF-1α, whereas B-cell lymphoma 2(Bcl2), a HIF-1α, and miR-126 regulated gene expressed optimally under neutral hypoxia. Conclusion. Inflammatory responses of ECs to H/A are dynamically regulated by the combined actions of hypoxia, miR-126, and HIF-1α on the master regulator HMGB1. The findings may be relevant to vascular diseases including atherosclerotic occlusion and interiors of plaque where coexisting hypoxia and acidosis promote inflammation as a defining etiology.</description><identifier>ISSN: 0278-0240</identifier><identifier>EISSN: 1875-8630</identifier><identifier>DOI: 10.1155/2021/4933194</identifier><identifier>PMID: 34970357</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>3' Untranslated regions ; Acidosis ; Angiogenesis ; Animals ; Antibodies ; Arteriosclerosis ; Atherosclerosis ; B-cell lymphoma ; Cell Hypoxia - physiology ; Cells, Cultured ; Crosstalk ; Cytokines ; Effectors ; Endothelial cells ; Endothelial Cells - metabolism ; Enzyme-linked immunosorbent assay ; Etiology ; Gene expression ; HMGB1 protein ; HMGB1 Protein - physiology ; Hypoxia ; Hypoxia-inducible factor 1 ; Hypoxia-inducible factor 1a ; Inflammation ; Inflammation - etiology ; Ischemia ; Kinases ; Lymphocytes B ; Lymphoma ; Metabolism ; Metabolites ; Mice ; MicroRNAs ; MicroRNAs - physiology ; Occlusion ; Proteins ; Senescence ; Vascular diseases</subject><ispartof>Disease markers, 2021, Vol.2021, p.4933194-14</ispartof><rights>Copyright © 2021 Jinxue Liu et al.</rights><rights>Copyright © 2021 Jinxue Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2021 Jinxue Liu et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-72a2f8bed8a75093ff8aeb1baa96e0a07d23c0d5469bc030e6bdb5c5b380eca3</citedby><cites>FETCH-LOGICAL-c514t-72a2f8bed8a75093ff8aeb1baa96e0a07d23c0d5469bc030e6bdb5c5b380eca3</cites><orcidid>0000-0002-6642-5277 ; 0000-0002-3193-4354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8714334/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8714334/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34970357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Su, Ting</contributor><contributor>Ting Su</contributor><creatorcontrib>Liu, Jinxue</creatorcontrib><creatorcontrib>Wei, Eileen</creatorcontrib><creatorcontrib>Wei, Jianqin</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Webster, Keith A.</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Zhang, Gaoxing</creatorcontrib><creatorcontrib>Wei, Yidong</creatorcontrib><creatorcontrib>Long, Yusheng</creatorcontrib><creatorcontrib>Qi, Xiuyu</creatorcontrib><creatorcontrib>Zhang, Qianhuan</creatorcontrib><creatorcontrib>Xu, Dingli</creatorcontrib><title>MiR-126-HMGB1-HIF-1 Axis Regulates Endothelial Cell Inflammation during Exposure to Hypoxia-Acidosis</title><title>Disease markers</title><addtitle>Dis Markers</addtitle><description>Crosstalk between molecular regulators miR-126, hypoxia-inducible factor 1-alpha (HIF-1-α), and high-mobility group box-1 (HMGB1) contributes to the regulation of inflammation and angiogenesis in multiple physiological and pathophysiological settings. Here, we present evidence of an overriding role for miR-126 in the regulation of HMGB1 and its downstream proinflammatory effectors in endothelial cells subjected to hypoxia with concurrent acidosis (H/A). Methods. Primary mouse endothelial cells (PMEC) were exposed to hypoxia or H/A to simulate short or chronic low-flow ischemia, respectively. RT-qPCR quantified mRNA transcripts, and proteins were measured by western blot. ROS were quantified by fluorogenic ELISA and luciferase reporter assays employed to confirm an active miR-126 target in the HMGB1 3′UTR. Results. Enhanced expression of miR-126 in PMECs cultured under neutral hypoxia was suppressed under H/A, whereas the HMGB1 expression increased sequentially under both conditions. Enhanced expression of HMGB1 and downstream inflammation markers was blocked by the premiR-126 overexpression and optimized by antagomiR. Compared with neutral hypoxia, H/A suppressed the HIF-1α expression independently of miR-126. The results show that HMGB1 and downstream effectors are optimally induced by H/A relative to neutral hypoxia via crosstalk between hypoxia signaling, miR-126, and HIF-1α, whereas B-cell lymphoma 2(Bcl2), a HIF-1α, and miR-126 regulated gene expressed optimally under neutral hypoxia. Conclusion. Inflammatory responses of ECs to H/A are dynamically regulated by the combined actions of hypoxia, miR-126, and HIF-1α on the master regulator HMGB1. The findings may be relevant to vascular diseases including atherosclerotic occlusion and interiors of plaque where coexisting hypoxia and acidosis promote inflammation as a defining etiology.</description><subject>3' Untranslated regions</subject><subject>Acidosis</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Arteriosclerosis</subject><subject>Atherosclerosis</subject><subject>B-cell lymphoma</subject><subject>Cell Hypoxia - physiology</subject><subject>Cells, Cultured</subject><subject>Crosstalk</subject><subject>Cytokines</subject><subject>Effectors</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Etiology</subject><subject>Gene expression</subject><subject>HMGB1 protein</subject><subject>HMGB1 Protein - physiology</subject><subject>Hypoxia</subject><subject>Hypoxia-inducible factor 1</subject><subject>Hypoxia-inducible factor 1a</subject><subject>Inflammation</subject><subject>Inflammation - etiology</subject><subject>Ischemia</subject><subject>Kinases</subject><subject>Lymphocytes B</subject><subject>Lymphoma</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mice</subject><subject>MicroRNAs</subject><subject>MicroRNAs - physiology</subject><subject>Occlusion</subject><subject>Proteins</subject><subject>Senescence</subject><subject>Vascular diseases</subject><issn>0278-0240</issn><issn>1875-8630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kU1vEzEURS0EoqGwY40ssUEqpv4cezaVQpQ2kVohVd1bHtuTuJqxw3gG0n9fl4QKWLB6i3d09O67ALwn-AshQpxTTMk5rxkjNX8BZkRJgVTF8Esww1QqhCnHJ-BNzvcYE1rz-jU4YbyWmAk5A-4m3CJCK7S6ufpK0Gp9iQic70OGt34zdWb0GS6jS-PWd8F0cOG7Dq5j25m-N2NIEbppCHEDl_tdytPg4Zjg6mGX9sGguQ0u5ZDfglet6bJ_d5yn4O5yebdYoetvV-vF_BpZQfiIJDW0VY13ykiBa9a2yviGNMbUlccGS0eZxU7wqm4sZthXjWuEFQ1T2FvDTsHFQbubmt476-M4mE7vhtCb4UEnE_Tfmxi2epN-aCUJZ4wXwaejYEjfJ59H3YdsS2ITfZqyphURNS1flwX9-A96n6YhlnS_KFWV-0WhPh8oO6ScB98-H0OwfmpPP7Wnj-0V_MOfAZ7h33UV4OwAbEN05mf4v-4RVVuhXw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Liu, Jinxue</creator><creator>Wei, Eileen</creator><creator>Wei, Jianqin</creator><creator>Zhou, Wei</creator><creator>Webster, Keith A.</creator><creator>Zhang, Bin</creator><creator>Li, Dong</creator><creator>Zhang, Gaoxing</creator><creator>Wei, Yidong</creator><creator>Long, Yusheng</creator><creator>Qi, Xiuyu</creator><creator>Zhang, Qianhuan</creator><creator>Xu, Dingli</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6642-5277</orcidid><orcidid>https://orcid.org/0000-0002-3193-4354</orcidid></search><sort><creationdate>2021</creationdate><title>MiR-126-HMGB1-HIF-1 Axis Regulates Endothelial Cell Inflammation during Exposure to Hypoxia-Acidosis</title><author>Liu, Jinxue ; Wei, Eileen ; Wei, Jianqin ; Zhou, Wei ; Webster, Keith A. ; Zhang, Bin ; Li, Dong ; Zhang, Gaoxing ; Wei, Yidong ; Long, Yusheng ; Qi, Xiuyu ; Zhang, Qianhuan ; Xu, Dingli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-72a2f8bed8a75093ff8aeb1baa96e0a07d23c0d5469bc030e6bdb5c5b380eca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3' Untranslated regions</topic><topic>Acidosis</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Arteriosclerosis</topic><topic>Atherosclerosis</topic><topic>B-cell lymphoma</topic><topic>Cell Hypoxia - physiology</topic><topic>Cells, Cultured</topic><topic>Crosstalk</topic><topic>Cytokines</topic><topic>Effectors</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Etiology</topic><topic>Gene expression</topic><topic>HMGB1 protein</topic><topic>HMGB1 Protein - physiology</topic><topic>Hypoxia</topic><topic>Hypoxia-inducible factor 1</topic><topic>Hypoxia-inducible factor 1a</topic><topic>Inflammation</topic><topic>Inflammation - etiology</topic><topic>Ischemia</topic><topic>Kinases</topic><topic>Lymphocytes B</topic><topic>Lymphoma</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mice</topic><topic>MicroRNAs</topic><topic>MicroRNAs - physiology</topic><topic>Occlusion</topic><topic>Proteins</topic><topic>Senescence</topic><topic>Vascular diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jinxue</creatorcontrib><creatorcontrib>Wei, Eileen</creatorcontrib><creatorcontrib>Wei, Jianqin</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Webster, Keith A.</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Zhang, Gaoxing</creatorcontrib><creatorcontrib>Wei, Yidong</creatorcontrib><creatorcontrib>Long, Yusheng</creatorcontrib><creatorcontrib>Qi, Xiuyu</creatorcontrib><creatorcontrib>Zhang, Qianhuan</creatorcontrib><creatorcontrib>Xu, Dingli</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Disease markers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jinxue</au><au>Wei, Eileen</au><au>Wei, Jianqin</au><au>Zhou, Wei</au><au>Webster, Keith A.</au><au>Zhang, Bin</au><au>Li, Dong</au><au>Zhang, Gaoxing</au><au>Wei, Yidong</au><au>Long, Yusheng</au><au>Qi, Xiuyu</au><au>Zhang, Qianhuan</au><au>Xu, Dingli</au><au>Su, Ting</au><au>Ting Su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MiR-126-HMGB1-HIF-1 Axis Regulates Endothelial Cell Inflammation during Exposure to Hypoxia-Acidosis</atitle><jtitle>Disease markers</jtitle><addtitle>Dis Markers</addtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>4933194</spage><epage>14</epage><pages>4933194-14</pages><issn>0278-0240</issn><eissn>1875-8630</eissn><abstract>Crosstalk between molecular regulators miR-126, hypoxia-inducible factor 1-alpha (HIF-1-α), and high-mobility group box-1 (HMGB1) contributes to the regulation of inflammation and angiogenesis in multiple physiological and pathophysiological settings. Here, we present evidence of an overriding role for miR-126 in the regulation of HMGB1 and its downstream proinflammatory effectors in endothelial cells subjected to hypoxia with concurrent acidosis (H/A). Methods. Primary mouse endothelial cells (PMEC) were exposed to hypoxia or H/A to simulate short or chronic low-flow ischemia, respectively. RT-qPCR quantified mRNA transcripts, and proteins were measured by western blot. ROS were quantified by fluorogenic ELISA and luciferase reporter assays employed to confirm an active miR-126 target in the HMGB1 3′UTR. Results. Enhanced expression of miR-126 in PMECs cultured under neutral hypoxia was suppressed under H/A, whereas the HMGB1 expression increased sequentially under both conditions. Enhanced expression of HMGB1 and downstream inflammation markers was blocked by the premiR-126 overexpression and optimized by antagomiR. Compared with neutral hypoxia, H/A suppressed the HIF-1α expression independently of miR-126. The results show that HMGB1 and downstream effectors are optimally induced by H/A relative to neutral hypoxia via crosstalk between hypoxia signaling, miR-126, and HIF-1α, whereas B-cell lymphoma 2(Bcl2), a HIF-1α, and miR-126 regulated gene expressed optimally under neutral hypoxia. Conclusion. Inflammatory responses of ECs to H/A are dynamically regulated by the combined actions of hypoxia, miR-126, and HIF-1α on the master regulator HMGB1. The findings may be relevant to vascular diseases including atherosclerotic occlusion and interiors of plaque where coexisting hypoxia and acidosis promote inflammation as a defining etiology.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>34970357</pmid><doi>10.1155/2021/4933194</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6642-5277</orcidid><orcidid>https://orcid.org/0000-0002-3193-4354</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0240
ispartof Disease markers, 2021, Vol.2021, p.4933194-14
issn 0278-0240
1875-8630
language eng
recordid cdi_crossref_primary_10_1155_2021_4933194
source MEDLINE; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects 3' Untranslated regions
Acidosis
Angiogenesis
Animals
Antibodies
Arteriosclerosis
Atherosclerosis
B-cell lymphoma
Cell Hypoxia - physiology
Cells, Cultured
Crosstalk
Cytokines
Effectors
Endothelial cells
Endothelial Cells - metabolism
Enzyme-linked immunosorbent assay
Etiology
Gene expression
HMGB1 protein
HMGB1 Protein - physiology
Hypoxia
Hypoxia-inducible factor 1
Hypoxia-inducible factor 1a
Inflammation
Inflammation - etiology
Ischemia
Kinases
Lymphocytes B
Lymphoma
Metabolism
Metabolites
Mice
MicroRNAs
MicroRNAs - physiology
Occlusion
Proteins
Senescence
Vascular diseases
title MiR-126-HMGB1-HIF-1 Axis Regulates Endothelial Cell Inflammation during Exposure to Hypoxia-Acidosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A19%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MiR-126-HMGB1-HIF-1%20Axis%20Regulates%20Endothelial%20Cell%20Inflammation%20during%20Exposure%20to%20Hypoxia-Acidosis&rft.jtitle=Disease%20markers&rft.au=Liu,%20Jinxue&rft.date=2021&rft.volume=2021&rft.spage=4933194&rft.epage=14&rft.pages=4933194-14&rft.issn=0278-0240&rft.eissn=1875-8630&rft_id=info:doi/10.1155/2021/4933194&rft_dat=%3Cproquest_pubme%3E2615921157%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615860935&rft_id=info:pmid/34970357&rfr_iscdi=true