Bayesian Estimation of Gumbel Type-II Distribution under Type-II Censoring with Medical Applications
The time to event or survival time usually follows certain skewed probability distributions. These distributions encounter vital role using the Bayesian framework to analyze and project the maximum life expectancy in order to inform decision-making. The Bayesian method provides a flexible framework...
Gespeichert in:
Veröffentlicht in: | Computational and mathematical methods in medicine 2020-03, Vol.2020 (2020), p.1-11 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | Computational and mathematical methods in medicine |
container_volume | 2020 |
creator | Khan, Dost Muhammad Khalil, Umair Khan, Sajjad Ahmad Taj, Muhammad Ali, Amjad Rashid, Noreen Hussain, Zamir Abbas, Kamran Manzoor, Sadaf |
description | The time to event or survival time usually follows certain skewed probability distributions. These distributions encounter vital role using the Bayesian framework to analyze and project the maximum life expectancy in order to inform decision-making. The Bayesian method provides a flexible framework for monitoring the randomized clinical trials to update what is already known using prior information about specific phenomena under uncertainty. Additionally, medical practitioners can use the Bayesian estimators to measure the probability of time until tumor recurrence, time until cardiovascular death, and time until AIDS for HIV patients by considering the prior information. However, in clinical trials and medical studies, censoring is present when an exact event occurrence time is not known. The present study aims to estimate the parameters of Gumbel type-II distribution based on the type-II censored data using the Bayesian framework. The Bayesian estimators cannot be obtained in explicit forms, and therefore we use Lindley’s approximation based on noninformative prior and various loss functions such as squared error loss function, general entropy loss function, and LINEX (linear exponential) loss function. The maximum likelihood and Bayesian estimators are compared in terms of mean squared error by using the simulation study. Furthermore, two data sets about remission times (in months) of bladder cancer patients and survival times in weeks of 61 patients with inoperable adenocarcinoma of the lung are analyzed for illustration purposes. |
doi_str_mv | 10.1155/2020/1876073 |
format | Article |
fullrecord | <record><control><sourceid>emarefa_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1155_2020_1876073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1139356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-d21bbc83dc0ccd98e54ddc02ba5eee481e405ee49208f50c7bf7ddd17bd154c83</originalsourceid><addsrcrecordid>eNqFkE1PAjEQhhujiYjePJvedaWz3dJyREQkwXjBxNumH7NSs-xu2iWEf-8iBI-e5knmeSeZl5BbYI8AQgxSlrIBKDlkkp-RHshMJUMJ6vzE7POSXMX4zZgAKaBH3JPeYfS6otPY-rVufV3RuqCzzdpgSZe7BpP5nD772AZvNr_rTeUwnFYTrGIdfPVFt75d0Td03uqSjpum7GAfiNfkotBlxJvj7JOPl-ly8pos3mfzyXiRWM7TNnEpGGMVd5ZZ60YKReY6To0WiJgpwIx1lI1SpgrBrDSFdM6BNA5E1gX75OFw14Y6xoBF3oTup7DLgeX7hvJ9Q_mxoU6_P-grXzm99f_ZdwcbOwcL_WcDH3Ex5D_7EXF-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bayesian Estimation of Gumbel Type-II Distribution under Type-II Censoring with Medical Applications</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Khan, Dost Muhammad ; Khalil, Umair ; Khan, Sajjad Ahmad ; Taj, Muhammad ; Ali, Amjad ; Rashid, Noreen ; Hussain, Zamir ; Abbas, Kamran ; Manzoor, Sadaf</creator><contributor>Khanna, Pritee</contributor><creatorcontrib>Khan, Dost Muhammad ; Khalil, Umair ; Khan, Sajjad Ahmad ; Taj, Muhammad ; Ali, Amjad ; Rashid, Noreen ; Hussain, Zamir ; Abbas, Kamran ; Manzoor, Sadaf ; Khanna, Pritee</creatorcontrib><description>The time to event or survival time usually follows certain skewed probability distributions. These distributions encounter vital role using the Bayesian framework to analyze and project the maximum life expectancy in order to inform decision-making. The Bayesian method provides a flexible framework for monitoring the randomized clinical trials to update what is already known using prior information about specific phenomena under uncertainty. Additionally, medical practitioners can use the Bayesian estimators to measure the probability of time until tumor recurrence, time until cardiovascular death, and time until AIDS for HIV patients by considering the prior information. However, in clinical trials and medical studies, censoring is present when an exact event occurrence time is not known. The present study aims to estimate the parameters of Gumbel type-II distribution based on the type-II censored data using the Bayesian framework. The Bayesian estimators cannot be obtained in explicit forms, and therefore we use Lindley’s approximation based on noninformative prior and various loss functions such as squared error loss function, general entropy loss function, and LINEX (linear exponential) loss function. The maximum likelihood and Bayesian estimators are compared in terms of mean squared error by using the simulation study. Furthermore, two data sets about remission times (in months) of bladder cancer patients and survival times in weeks of 61 patients with inoperable adenocarcinoma of the lung are analyzed for illustration purposes.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2020/1876073</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><ispartof>Computational and mathematical methods in medicine, 2020-03, Vol.2020 (2020), p.1-11</ispartof><rights>Copyright © 2020 Kamran Abbas et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-d21bbc83dc0ccd98e54ddc02ba5eee481e405ee49208f50c7bf7ddd17bd154c83</citedby><cites>FETCH-LOGICAL-c332t-d21bbc83dc0ccd98e54ddc02ba5eee481e405ee49208f50c7bf7ddd17bd154c83</cites><orcidid>0000-0002-3919-8136 ; 0000-0001-8048-9093 ; 0000-0002-6975-4017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Khanna, Pritee</contributor><creatorcontrib>Khan, Dost Muhammad</creatorcontrib><creatorcontrib>Khalil, Umair</creatorcontrib><creatorcontrib>Khan, Sajjad Ahmad</creatorcontrib><creatorcontrib>Taj, Muhammad</creatorcontrib><creatorcontrib>Ali, Amjad</creatorcontrib><creatorcontrib>Rashid, Noreen</creatorcontrib><creatorcontrib>Hussain, Zamir</creatorcontrib><creatorcontrib>Abbas, Kamran</creatorcontrib><creatorcontrib>Manzoor, Sadaf</creatorcontrib><title>Bayesian Estimation of Gumbel Type-II Distribution under Type-II Censoring with Medical Applications</title><title>Computational and mathematical methods in medicine</title><description>The time to event or survival time usually follows certain skewed probability distributions. These distributions encounter vital role using the Bayesian framework to analyze and project the maximum life expectancy in order to inform decision-making. The Bayesian method provides a flexible framework for monitoring the randomized clinical trials to update what is already known using prior information about specific phenomena under uncertainty. Additionally, medical practitioners can use the Bayesian estimators to measure the probability of time until tumor recurrence, time until cardiovascular death, and time until AIDS for HIV patients by considering the prior information. However, in clinical trials and medical studies, censoring is present when an exact event occurrence time is not known. The present study aims to estimate the parameters of Gumbel type-II distribution based on the type-II censored data using the Bayesian framework. The Bayesian estimators cannot be obtained in explicit forms, and therefore we use Lindley’s approximation based on noninformative prior and various loss functions such as squared error loss function, general entropy loss function, and LINEX (linear exponential) loss function. The maximum likelihood and Bayesian estimators are compared in terms of mean squared error by using the simulation study. Furthermore, two data sets about remission times (in months) of bladder cancer patients and survival times in weeks of 61 patients with inoperable adenocarcinoma of the lung are analyzed for illustration purposes.</description><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqFkE1PAjEQhhujiYjePJvedaWz3dJyREQkwXjBxNumH7NSs-xu2iWEf-8iBI-e5knmeSeZl5BbYI8AQgxSlrIBKDlkkp-RHshMJUMJ6vzE7POSXMX4zZgAKaBH3JPeYfS6otPY-rVufV3RuqCzzdpgSZe7BpP5nD772AZvNr_rTeUwnFYTrGIdfPVFt75d0Td03uqSjpum7GAfiNfkotBlxJvj7JOPl-ly8pos3mfzyXiRWM7TNnEpGGMVd5ZZ60YKReY6To0WiJgpwIx1lI1SpgrBrDSFdM6BNA5E1gX75OFw14Y6xoBF3oTup7DLgeX7hvJ9Q_mxoU6_P-grXzm99f_ZdwcbOwcL_WcDH3Ex5D_7EXF-</recordid><startdate>20200326</startdate><enddate>20200326</enddate><creator>Khan, Dost Muhammad</creator><creator>Khalil, Umair</creator><creator>Khan, Sajjad Ahmad</creator><creator>Taj, Muhammad</creator><creator>Ali, Amjad</creator><creator>Rashid, Noreen</creator><creator>Hussain, Zamir</creator><creator>Abbas, Kamran</creator><creator>Manzoor, Sadaf</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3919-8136</orcidid><orcidid>https://orcid.org/0000-0001-8048-9093</orcidid><orcidid>https://orcid.org/0000-0002-6975-4017</orcidid></search><sort><creationdate>20200326</creationdate><title>Bayesian Estimation of Gumbel Type-II Distribution under Type-II Censoring with Medical Applications</title><author>Khan, Dost Muhammad ; Khalil, Umair ; Khan, Sajjad Ahmad ; Taj, Muhammad ; Ali, Amjad ; Rashid, Noreen ; Hussain, Zamir ; Abbas, Kamran ; Manzoor, Sadaf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-d21bbc83dc0ccd98e54ddc02ba5eee481e405ee49208f50c7bf7ddd17bd154c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Dost Muhammad</creatorcontrib><creatorcontrib>Khalil, Umair</creatorcontrib><creatorcontrib>Khan, Sajjad Ahmad</creatorcontrib><creatorcontrib>Taj, Muhammad</creatorcontrib><creatorcontrib>Ali, Amjad</creatorcontrib><creatorcontrib>Rashid, Noreen</creatorcontrib><creatorcontrib>Hussain, Zamir</creatorcontrib><creatorcontrib>Abbas, Kamran</creatorcontrib><creatorcontrib>Manzoor, Sadaf</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Dost Muhammad</au><au>Khalil, Umair</au><au>Khan, Sajjad Ahmad</au><au>Taj, Muhammad</au><au>Ali, Amjad</au><au>Rashid, Noreen</au><au>Hussain, Zamir</au><au>Abbas, Kamran</au><au>Manzoor, Sadaf</au><au>Khanna, Pritee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Estimation of Gumbel Type-II Distribution under Type-II Censoring with Medical Applications</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><date>2020-03-26</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>The time to event or survival time usually follows certain skewed probability distributions. These distributions encounter vital role using the Bayesian framework to analyze and project the maximum life expectancy in order to inform decision-making. The Bayesian method provides a flexible framework for monitoring the randomized clinical trials to update what is already known using prior information about specific phenomena under uncertainty. Additionally, medical practitioners can use the Bayesian estimators to measure the probability of time until tumor recurrence, time until cardiovascular death, and time until AIDS for HIV patients by considering the prior information. However, in clinical trials and medical studies, censoring is present when an exact event occurrence time is not known. The present study aims to estimate the parameters of Gumbel type-II distribution based on the type-II censored data using the Bayesian framework. The Bayesian estimators cannot be obtained in explicit forms, and therefore we use Lindley’s approximation based on noninformative prior and various loss functions such as squared error loss function, general entropy loss function, and LINEX (linear exponential) loss function. The maximum likelihood and Bayesian estimators are compared in terms of mean squared error by using the simulation study. Furthermore, two data sets about remission times (in months) of bladder cancer patients and survival times in weeks of 61 patients with inoperable adenocarcinoma of the lung are analyzed for illustration purposes.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/1876073</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3919-8136</orcidid><orcidid>https://orcid.org/0000-0001-8048-9093</orcidid><orcidid>https://orcid.org/0000-0002-6975-4017</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-670X |
ispartof | Computational and mathematical methods in medicine, 2020-03, Vol.2020 (2020), p.1-11 |
issn | 1748-670X 1748-6718 |
language | eng |
recordid | cdi_crossref_primary_10_1155_2020_1876073 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection |
title | Bayesian Estimation of Gumbel Type-II Distribution under Type-II Censoring with Medical Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A11%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emarefa_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Estimation%20of%20Gumbel%20Type-II%20Distribution%20under%20Type-II%20Censoring%20with%20Medical%20Applications&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Khan,%20Dost%20Muhammad&rft.date=2020-03-26&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2020/1876073&rft_dat=%3Cemarefa_cross%3E1139356%3C/emarefa_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |