Dynamics of Kaolinite-Urea Nanocomposites via Coupled DMSO-Hydroxyaluminum Oligomeric Intermediates

Kaolinite-urea nanocomposites were prepared via intercalation reactions in an attempt to investigate the dynamic nature of kaolinite morphology for advanced applications in controlled release systems (CRS). Characterization was done using SEM-EDX, XRF, ATR-FTIR, XRD, and DT/DTG; Andreasen pipette se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of materials science 2015-09, Vol.2015, p.1-10
Hauptverfasser: Sempeho, Siafu Ibahati, Kim, Hee Taik, Mubofu, Egid, Pogrebnoi, Alexander, Shao, Godlisten, Hilonga, Askwar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title Indian journal of materials science
container_volume 2015
creator Sempeho, Siafu Ibahati
Kim, Hee Taik
Mubofu, Egid
Pogrebnoi, Alexander
Shao, Godlisten
Hilonga, Askwar
description Kaolinite-urea nanocomposites were prepared via intercalation reactions in an attempt to investigate the dynamic nature of kaolinite morphology for advanced applications in controlled release systems (CRS). Characterization was done using SEM-EDX, XRF, ATR-FTIR, XRD, and DT/DTG; Andreasen pipette sedimentation technique was used to determine the grain size distribution of the raw kaolinite. The X-ray diffraction pattern revealed the existence of an FCC Bravais lattice where the intercalation ratios attained were 51.2%, 32.4%, 7.0%, and 38.4% for hydroxyaluminum oligomeric intercalated kaolinite, substituted urea intercalated kaolinite, calcined DMSO intercalated kaolinite, and hydroxyaluminum reintercalated kaolinite, respectively, along with their respective crystallite sizes of 33.51–31.73 nm, 41.92–39.69 nm, 22.31–21.13 nm, and 41.86–39.63 nm. The outcomes demonstrated that the employed intercalation routes require improvements as the intercalation reactions were in average only ≈32.3%. The observations unveiled that it is possible to manipulate kaolinite structure into various morphologies including dense-tightly packed overlapping euhedral pseudo hexagonal platelets, stacked vermiform morphologies, postulated forms, and unique patterns exhibiting self-assembled curled glomeruli-like morphologies. Such a diversity of kaolinite morphologies expedites its advanced applications in the controlled release systems (CRS) such as drug delivery systems and controlled release fertilizers (CRFs).
doi_str_mv 10.1155/2015/920835
format Article
fullrecord <record><control><sourceid>crossref_hinda</sourceid><recordid>TN_cdi_crossref_primary_10_1155_2015_920835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1155_2015_920835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1085-fcff3c6feb772494be4f0294d6da0ff85cc3927f2ee267dd0179bb747ea925d53</originalsourceid><addsrcrecordid>eNp9kMFOAyEURYnRxKZ25Q-w1owFBsqwNK3axmoX2vWEgYdihqGBVp2_t01duHL1bl7OvYuD0CUlN5QKMWaEirFipCrFCRqwkvJCckVO_-RzNMr5gxBCmZCikgNkZn2ngzcZR4cfdWx957dQrBNo_Ky7aGLYxLx_ZfzpNZ7G3aYFi2dPL6ti3tsUv3vd7oLvdgGvWv8WAyRv8KLbQgpgvd43L9CZ022G0e8dovX93et0XixXD4vp7bIwlFSicMa50kwcNFIyrngD3BGmuJ1YTZyrhDGlYtIxADaR1hIqVdNILkErJqwoh-j6uGtSzDmBqzfJB536mpL6oKg-KKqPivb01ZF-953VX_5f-Aem4Wdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamics of Kaolinite-Urea Nanocomposites via Coupled DMSO-Hydroxyaluminum Oligomeric Intermediates</title><source>Wiley-Blackwell Open Access Collection</source><source>Alma/SFX Local Collection</source><creator>Sempeho, Siafu Ibahati ; Kim, Hee Taik ; Mubofu, Egid ; Pogrebnoi, Alexander ; Shao, Godlisten ; Hilonga, Askwar</creator><contributor>Lavorgna, Marino</contributor><creatorcontrib>Sempeho, Siafu Ibahati ; Kim, Hee Taik ; Mubofu, Egid ; Pogrebnoi, Alexander ; Shao, Godlisten ; Hilonga, Askwar ; Lavorgna, Marino</creatorcontrib><description>Kaolinite-urea nanocomposites were prepared via intercalation reactions in an attempt to investigate the dynamic nature of kaolinite morphology for advanced applications in controlled release systems (CRS). Characterization was done using SEM-EDX, XRF, ATR-FTIR, XRD, and DT/DTG; Andreasen pipette sedimentation technique was used to determine the grain size distribution of the raw kaolinite. The X-ray diffraction pattern revealed the existence of an FCC Bravais lattice where the intercalation ratios attained were 51.2%, 32.4%, 7.0%, and 38.4% for hydroxyaluminum oligomeric intercalated kaolinite, substituted urea intercalated kaolinite, calcined DMSO intercalated kaolinite, and hydroxyaluminum reintercalated kaolinite, respectively, along with their respective crystallite sizes of 33.51–31.73 nm, 41.92–39.69 nm, 22.31–21.13 nm, and 41.86–39.63 nm. The outcomes demonstrated that the employed intercalation routes require improvements as the intercalation reactions were in average only ≈32.3%. The observations unveiled that it is possible to manipulate kaolinite structure into various morphologies including dense-tightly packed overlapping euhedral pseudo hexagonal platelets, stacked vermiform morphologies, postulated forms, and unique patterns exhibiting self-assembled curled glomeruli-like morphologies. Such a diversity of kaolinite morphologies expedites its advanced applications in the controlled release systems (CRS) such as drug delivery systems and controlled release fertilizers (CRFs).</description><identifier>ISSN: 2314-7490</identifier><identifier>EISSN: 2314-7490</identifier><identifier>DOI: 10.1155/2015/920835</identifier><language>eng</language><publisher>Hindawi Publishing Corporation</publisher><ispartof>Indian journal of materials science, 2015-09, Vol.2015, p.1-10</ispartof><rights>Copyright © 2015 Siafu Ibahati Sempeho et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1085-fcff3c6feb772494be4f0294d6da0ff85cc3927f2ee267dd0179bb747ea925d53</cites><orcidid>0000-0002-2938-5149 ; 0000-0002-9901-6680 ; 0000-0002-6410-7566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><contributor>Lavorgna, Marino</contributor><creatorcontrib>Sempeho, Siafu Ibahati</creatorcontrib><creatorcontrib>Kim, Hee Taik</creatorcontrib><creatorcontrib>Mubofu, Egid</creatorcontrib><creatorcontrib>Pogrebnoi, Alexander</creatorcontrib><creatorcontrib>Shao, Godlisten</creatorcontrib><creatorcontrib>Hilonga, Askwar</creatorcontrib><title>Dynamics of Kaolinite-Urea Nanocomposites via Coupled DMSO-Hydroxyaluminum Oligomeric Intermediates</title><title>Indian journal of materials science</title><description>Kaolinite-urea nanocomposites were prepared via intercalation reactions in an attempt to investigate the dynamic nature of kaolinite morphology for advanced applications in controlled release systems (CRS). Characterization was done using SEM-EDX, XRF, ATR-FTIR, XRD, and DT/DTG; Andreasen pipette sedimentation technique was used to determine the grain size distribution of the raw kaolinite. The X-ray diffraction pattern revealed the existence of an FCC Bravais lattice where the intercalation ratios attained were 51.2%, 32.4%, 7.0%, and 38.4% for hydroxyaluminum oligomeric intercalated kaolinite, substituted urea intercalated kaolinite, calcined DMSO intercalated kaolinite, and hydroxyaluminum reintercalated kaolinite, respectively, along with their respective crystallite sizes of 33.51–31.73 nm, 41.92–39.69 nm, 22.31–21.13 nm, and 41.86–39.63 nm. The outcomes demonstrated that the employed intercalation routes require improvements as the intercalation reactions were in average only ≈32.3%. The observations unveiled that it is possible to manipulate kaolinite structure into various morphologies including dense-tightly packed overlapping euhedral pseudo hexagonal platelets, stacked vermiform morphologies, postulated forms, and unique patterns exhibiting self-assembled curled glomeruli-like morphologies. Such a diversity of kaolinite morphologies expedites its advanced applications in the controlled release systems (CRS) such as drug delivery systems and controlled release fertilizers (CRFs).</description><issn>2314-7490</issn><issn>2314-7490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kMFOAyEURYnRxKZ25Q-w1owFBsqwNK3axmoX2vWEgYdihqGBVp2_t01duHL1bl7OvYuD0CUlN5QKMWaEirFipCrFCRqwkvJCckVO_-RzNMr5gxBCmZCikgNkZn2ngzcZR4cfdWx957dQrBNo_Ky7aGLYxLx_ZfzpNZ7G3aYFi2dPL6ti3tsUv3vd7oLvdgGvWv8WAyRv8KLbQgpgvd43L9CZ022G0e8dovX93et0XixXD4vp7bIwlFSicMa50kwcNFIyrngD3BGmuJ1YTZyrhDGlYtIxADaR1hIqVdNILkErJqwoh-j6uGtSzDmBqzfJB536mpL6oKg-KKqPivb01ZF-953VX_5f-Aem4Wdg</recordid><startdate>20150913</startdate><enddate>20150913</enddate><creator>Sempeho, Siafu Ibahati</creator><creator>Kim, Hee Taik</creator><creator>Mubofu, Egid</creator><creator>Pogrebnoi, Alexander</creator><creator>Shao, Godlisten</creator><creator>Hilonga, Askwar</creator><general>Hindawi Publishing Corporation</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2938-5149</orcidid><orcidid>https://orcid.org/0000-0002-9901-6680</orcidid><orcidid>https://orcid.org/0000-0002-6410-7566</orcidid></search><sort><creationdate>20150913</creationdate><title>Dynamics of Kaolinite-Urea Nanocomposites via Coupled DMSO-Hydroxyaluminum Oligomeric Intermediates</title><author>Sempeho, Siafu Ibahati ; Kim, Hee Taik ; Mubofu, Egid ; Pogrebnoi, Alexander ; Shao, Godlisten ; Hilonga, Askwar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1085-fcff3c6feb772494be4f0294d6da0ff85cc3927f2ee267dd0179bb747ea925d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sempeho, Siafu Ibahati</creatorcontrib><creatorcontrib>Kim, Hee Taik</creatorcontrib><creatorcontrib>Mubofu, Egid</creatorcontrib><creatorcontrib>Pogrebnoi, Alexander</creatorcontrib><creatorcontrib>Shao, Godlisten</creatorcontrib><creatorcontrib>Hilonga, Askwar</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><jtitle>Indian journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sempeho, Siafu Ibahati</au><au>Kim, Hee Taik</au><au>Mubofu, Egid</au><au>Pogrebnoi, Alexander</au><au>Shao, Godlisten</au><au>Hilonga, Askwar</au><au>Lavorgna, Marino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of Kaolinite-Urea Nanocomposites via Coupled DMSO-Hydroxyaluminum Oligomeric Intermediates</atitle><jtitle>Indian journal of materials science</jtitle><date>2015-09-13</date><risdate>2015</risdate><volume>2015</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2314-7490</issn><eissn>2314-7490</eissn><abstract>Kaolinite-urea nanocomposites were prepared via intercalation reactions in an attempt to investigate the dynamic nature of kaolinite morphology for advanced applications in controlled release systems (CRS). Characterization was done using SEM-EDX, XRF, ATR-FTIR, XRD, and DT/DTG; Andreasen pipette sedimentation technique was used to determine the grain size distribution of the raw kaolinite. The X-ray diffraction pattern revealed the existence of an FCC Bravais lattice where the intercalation ratios attained were 51.2%, 32.4%, 7.0%, and 38.4% for hydroxyaluminum oligomeric intercalated kaolinite, substituted urea intercalated kaolinite, calcined DMSO intercalated kaolinite, and hydroxyaluminum reintercalated kaolinite, respectively, along with their respective crystallite sizes of 33.51–31.73 nm, 41.92–39.69 nm, 22.31–21.13 nm, and 41.86–39.63 nm. The outcomes demonstrated that the employed intercalation routes require improvements as the intercalation reactions were in average only ≈32.3%. The observations unveiled that it is possible to manipulate kaolinite structure into various morphologies including dense-tightly packed overlapping euhedral pseudo hexagonal platelets, stacked vermiform morphologies, postulated forms, and unique patterns exhibiting self-assembled curled glomeruli-like morphologies. Such a diversity of kaolinite morphologies expedites its advanced applications in the controlled release systems (CRS) such as drug delivery systems and controlled release fertilizers (CRFs).</abstract><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2015/920835</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2938-5149</orcidid><orcidid>https://orcid.org/0000-0002-9901-6680</orcidid><orcidid>https://orcid.org/0000-0002-6410-7566</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-7490
ispartof Indian journal of materials science, 2015-09, Vol.2015, p.1-10
issn 2314-7490
2314-7490
language eng
recordid cdi_crossref_primary_10_1155_2015_920835
source Wiley-Blackwell Open Access Collection; Alma/SFX Local Collection
title Dynamics of Kaolinite-Urea Nanocomposites via Coupled DMSO-Hydroxyaluminum Oligomeric Intermediates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_hinda&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20Kaolinite-Urea%20Nanocomposites%20via%20Coupled%20DMSO-Hydroxyaluminum%20Oligomeric%20Intermediates&rft.jtitle=Indian%20journal%20of%20materials%20science&rft.au=Sempeho,%20Siafu%20Ibahati&rft.date=2015-09-13&rft.volume=2015&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2314-7490&rft.eissn=2314-7490&rft_id=info:doi/10.1155/2015/920835&rft_dat=%3Ccrossref_hinda%3E10_1155_2015_920835%3C/crossref_hinda%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true