Dynamics of Kaolinite-Urea Nanocomposites via Coupled DMSO-Hydroxyaluminum Oligomeric Intermediates
Kaolinite-urea nanocomposites were prepared via intercalation reactions in an attempt to investigate the dynamic nature of kaolinite morphology for advanced applications in controlled release systems (CRS). Characterization was done using SEM-EDX, XRF, ATR-FTIR, XRD, and DT/DTG; Andreasen pipette se...
Gespeichert in:
Veröffentlicht in: | Indian journal of materials science 2015-09, Vol.2015, p.1-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Indian journal of materials science |
container_volume | 2015 |
creator | Sempeho, Siafu Ibahati Kim, Hee Taik Mubofu, Egid Pogrebnoi, Alexander Shao, Godlisten Hilonga, Askwar |
description | Kaolinite-urea nanocomposites were prepared via intercalation reactions in an attempt to investigate the dynamic nature of kaolinite morphology for advanced applications in controlled release systems (CRS). Characterization was done using SEM-EDX, XRF, ATR-FTIR, XRD, and DT/DTG; Andreasen pipette sedimentation technique was used to determine the grain size distribution of the raw kaolinite. The X-ray diffraction pattern revealed the existence of an FCC Bravais lattice where the intercalation ratios attained were 51.2%, 32.4%, 7.0%, and 38.4% for hydroxyaluminum oligomeric intercalated kaolinite, substituted urea intercalated kaolinite, calcined DMSO intercalated kaolinite, and hydroxyaluminum reintercalated kaolinite, respectively, along with their respective crystallite sizes of 33.51–31.73 nm, 41.92–39.69 nm, 22.31–21.13 nm, and 41.86–39.63 nm. The outcomes demonstrated that the employed intercalation routes require improvements as the intercalation reactions were in average only ≈32.3%. The observations unveiled that it is possible to manipulate kaolinite structure into various morphologies including dense-tightly packed overlapping euhedral pseudo hexagonal platelets, stacked vermiform morphologies, postulated forms, and unique patterns exhibiting self-assembled curled glomeruli-like morphologies. Such a diversity of kaolinite morphologies expedites its advanced applications in the controlled release systems (CRS) such as drug delivery systems and controlled release fertilizers (CRFs). |
doi_str_mv | 10.1155/2015/920835 |
format | Article |
fullrecord | <record><control><sourceid>crossref_hinda</sourceid><recordid>TN_cdi_crossref_primary_10_1155_2015_920835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1155_2015_920835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1085-fcff3c6feb772494be4f0294d6da0ff85cc3927f2ee267dd0179bb747ea925d53</originalsourceid><addsrcrecordid>eNp9kMFOAyEURYnRxKZ25Q-w1owFBsqwNK3axmoX2vWEgYdihqGBVp2_t01duHL1bl7OvYuD0CUlN5QKMWaEirFipCrFCRqwkvJCckVO_-RzNMr5gxBCmZCikgNkZn2ngzcZR4cfdWx957dQrBNo_Ky7aGLYxLx_ZfzpNZ7G3aYFi2dPL6ti3tsUv3vd7oLvdgGvWv8WAyRv8KLbQgpgvd43L9CZ022G0e8dovX93et0XixXD4vp7bIwlFSicMa50kwcNFIyrngD3BGmuJ1YTZyrhDGlYtIxADaR1hIqVdNILkErJqwoh-j6uGtSzDmBqzfJB536mpL6oKg-KKqPivb01ZF-953VX_5f-Aem4Wdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamics of Kaolinite-Urea Nanocomposites via Coupled DMSO-Hydroxyaluminum Oligomeric Intermediates</title><source>Wiley-Blackwell Open Access Collection</source><source>Alma/SFX Local Collection</source><creator>Sempeho, Siafu Ibahati ; Kim, Hee Taik ; Mubofu, Egid ; Pogrebnoi, Alexander ; Shao, Godlisten ; Hilonga, Askwar</creator><contributor>Lavorgna, Marino</contributor><creatorcontrib>Sempeho, Siafu Ibahati ; Kim, Hee Taik ; Mubofu, Egid ; Pogrebnoi, Alexander ; Shao, Godlisten ; Hilonga, Askwar ; Lavorgna, Marino</creatorcontrib><description>Kaolinite-urea nanocomposites were prepared via intercalation reactions in an attempt to investigate the dynamic nature of kaolinite morphology for advanced applications in controlled release systems (CRS). Characterization was done using SEM-EDX, XRF, ATR-FTIR, XRD, and DT/DTG; Andreasen pipette sedimentation technique was used to determine the grain size distribution of the raw kaolinite. The X-ray diffraction pattern revealed the existence of an FCC Bravais lattice where the intercalation ratios attained were 51.2%, 32.4%, 7.0%, and 38.4% for hydroxyaluminum oligomeric intercalated kaolinite, substituted urea intercalated kaolinite, calcined DMSO intercalated kaolinite, and hydroxyaluminum reintercalated kaolinite, respectively, along with their respective crystallite sizes of 33.51–31.73 nm, 41.92–39.69 nm, 22.31–21.13 nm, and 41.86–39.63 nm. The outcomes demonstrated that the employed intercalation routes require improvements as the intercalation reactions were in average only ≈32.3%. The observations unveiled that it is possible to manipulate kaolinite structure into various morphologies including dense-tightly packed overlapping euhedral pseudo hexagonal platelets, stacked vermiform morphologies, postulated forms, and unique patterns exhibiting self-assembled curled glomeruli-like morphologies. Such a diversity of kaolinite morphologies expedites its advanced applications in the controlled release systems (CRS) such as drug delivery systems and controlled release fertilizers (CRFs).</description><identifier>ISSN: 2314-7490</identifier><identifier>EISSN: 2314-7490</identifier><identifier>DOI: 10.1155/2015/920835</identifier><language>eng</language><publisher>Hindawi Publishing Corporation</publisher><ispartof>Indian journal of materials science, 2015-09, Vol.2015, p.1-10</ispartof><rights>Copyright © 2015 Siafu Ibahati Sempeho et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1085-fcff3c6feb772494be4f0294d6da0ff85cc3927f2ee267dd0179bb747ea925d53</cites><orcidid>0000-0002-2938-5149 ; 0000-0002-9901-6680 ; 0000-0002-6410-7566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><contributor>Lavorgna, Marino</contributor><creatorcontrib>Sempeho, Siafu Ibahati</creatorcontrib><creatorcontrib>Kim, Hee Taik</creatorcontrib><creatorcontrib>Mubofu, Egid</creatorcontrib><creatorcontrib>Pogrebnoi, Alexander</creatorcontrib><creatorcontrib>Shao, Godlisten</creatorcontrib><creatorcontrib>Hilonga, Askwar</creatorcontrib><title>Dynamics of Kaolinite-Urea Nanocomposites via Coupled DMSO-Hydroxyaluminum Oligomeric Intermediates</title><title>Indian journal of materials science</title><description>Kaolinite-urea nanocomposites were prepared via intercalation reactions in an attempt to investigate the dynamic nature of kaolinite morphology for advanced applications in controlled release systems (CRS). Characterization was done using SEM-EDX, XRF, ATR-FTIR, XRD, and DT/DTG; Andreasen pipette sedimentation technique was used to determine the grain size distribution of the raw kaolinite. The X-ray diffraction pattern revealed the existence of an FCC Bravais lattice where the intercalation ratios attained were 51.2%, 32.4%, 7.0%, and 38.4% for hydroxyaluminum oligomeric intercalated kaolinite, substituted urea intercalated kaolinite, calcined DMSO intercalated kaolinite, and hydroxyaluminum reintercalated kaolinite, respectively, along with their respective crystallite sizes of 33.51–31.73 nm, 41.92–39.69 nm, 22.31–21.13 nm, and 41.86–39.63 nm. The outcomes demonstrated that the employed intercalation routes require improvements as the intercalation reactions were in average only ≈32.3%. The observations unveiled that it is possible to manipulate kaolinite structure into various morphologies including dense-tightly packed overlapping euhedral pseudo hexagonal platelets, stacked vermiform morphologies, postulated forms, and unique patterns exhibiting self-assembled curled glomeruli-like morphologies. Such a diversity of kaolinite morphologies expedites its advanced applications in the controlled release systems (CRS) such as drug delivery systems and controlled release fertilizers (CRFs).</description><issn>2314-7490</issn><issn>2314-7490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kMFOAyEURYnRxKZ25Q-w1owFBsqwNK3axmoX2vWEgYdihqGBVp2_t01duHL1bl7OvYuD0CUlN5QKMWaEirFipCrFCRqwkvJCckVO_-RzNMr5gxBCmZCikgNkZn2ngzcZR4cfdWx957dQrBNo_Ky7aGLYxLx_ZfzpNZ7G3aYFi2dPL6ti3tsUv3vd7oLvdgGvWv8WAyRv8KLbQgpgvd43L9CZ022G0e8dovX93et0XixXD4vp7bIwlFSicMa50kwcNFIyrngD3BGmuJ1YTZyrhDGlYtIxADaR1hIqVdNILkErJqwoh-j6uGtSzDmBqzfJB536mpL6oKg-KKqPivb01ZF-953VX_5f-Aem4Wdg</recordid><startdate>20150913</startdate><enddate>20150913</enddate><creator>Sempeho, Siafu Ibahati</creator><creator>Kim, Hee Taik</creator><creator>Mubofu, Egid</creator><creator>Pogrebnoi, Alexander</creator><creator>Shao, Godlisten</creator><creator>Hilonga, Askwar</creator><general>Hindawi Publishing Corporation</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2938-5149</orcidid><orcidid>https://orcid.org/0000-0002-9901-6680</orcidid><orcidid>https://orcid.org/0000-0002-6410-7566</orcidid></search><sort><creationdate>20150913</creationdate><title>Dynamics of Kaolinite-Urea Nanocomposites via Coupled DMSO-Hydroxyaluminum Oligomeric Intermediates</title><author>Sempeho, Siafu Ibahati ; Kim, Hee Taik ; Mubofu, Egid ; Pogrebnoi, Alexander ; Shao, Godlisten ; Hilonga, Askwar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1085-fcff3c6feb772494be4f0294d6da0ff85cc3927f2ee267dd0179bb747ea925d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sempeho, Siafu Ibahati</creatorcontrib><creatorcontrib>Kim, Hee Taik</creatorcontrib><creatorcontrib>Mubofu, Egid</creatorcontrib><creatorcontrib>Pogrebnoi, Alexander</creatorcontrib><creatorcontrib>Shao, Godlisten</creatorcontrib><creatorcontrib>Hilonga, Askwar</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><jtitle>Indian journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sempeho, Siafu Ibahati</au><au>Kim, Hee Taik</au><au>Mubofu, Egid</au><au>Pogrebnoi, Alexander</au><au>Shao, Godlisten</au><au>Hilonga, Askwar</au><au>Lavorgna, Marino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of Kaolinite-Urea Nanocomposites via Coupled DMSO-Hydroxyaluminum Oligomeric Intermediates</atitle><jtitle>Indian journal of materials science</jtitle><date>2015-09-13</date><risdate>2015</risdate><volume>2015</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2314-7490</issn><eissn>2314-7490</eissn><abstract>Kaolinite-urea nanocomposites were prepared via intercalation reactions in an attempt to investigate the dynamic nature of kaolinite morphology for advanced applications in controlled release systems (CRS). Characterization was done using SEM-EDX, XRF, ATR-FTIR, XRD, and DT/DTG; Andreasen pipette sedimentation technique was used to determine the grain size distribution of the raw kaolinite. The X-ray diffraction pattern revealed the existence of an FCC Bravais lattice where the intercalation ratios attained were 51.2%, 32.4%, 7.0%, and 38.4% for hydroxyaluminum oligomeric intercalated kaolinite, substituted urea intercalated kaolinite, calcined DMSO intercalated kaolinite, and hydroxyaluminum reintercalated kaolinite, respectively, along with their respective crystallite sizes of 33.51–31.73 nm, 41.92–39.69 nm, 22.31–21.13 nm, and 41.86–39.63 nm. The outcomes demonstrated that the employed intercalation routes require improvements as the intercalation reactions were in average only ≈32.3%. The observations unveiled that it is possible to manipulate kaolinite structure into various morphologies including dense-tightly packed overlapping euhedral pseudo hexagonal platelets, stacked vermiform morphologies, postulated forms, and unique patterns exhibiting self-assembled curled glomeruli-like morphologies. Such a diversity of kaolinite morphologies expedites its advanced applications in the controlled release systems (CRS) such as drug delivery systems and controlled release fertilizers (CRFs).</abstract><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2015/920835</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2938-5149</orcidid><orcidid>https://orcid.org/0000-0002-9901-6680</orcidid><orcidid>https://orcid.org/0000-0002-6410-7566</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-7490 |
ispartof | Indian journal of materials science, 2015-09, Vol.2015, p.1-10 |
issn | 2314-7490 2314-7490 |
language | eng |
recordid | cdi_crossref_primary_10_1155_2015_920835 |
source | Wiley-Blackwell Open Access Collection; Alma/SFX Local Collection |
title | Dynamics of Kaolinite-Urea Nanocomposites via Coupled DMSO-Hydroxyaluminum Oligomeric Intermediates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_hinda&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20Kaolinite-Urea%20Nanocomposites%20via%20Coupled%20DMSO-Hydroxyaluminum%20Oligomeric%20Intermediates&rft.jtitle=Indian%20journal%20of%20materials%20science&rft.au=Sempeho,%20Siafu%20Ibahati&rft.date=2015-09-13&rft.volume=2015&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2314-7490&rft.eissn=2314-7490&rft_id=info:doi/10.1155/2015/920835&rft_dat=%3Ccrossref_hinda%3E10_1155_2015_920835%3C/crossref_hinda%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |