Development of High-Resolution Total Variation Diminishing Scheme for Linear Hyperbolic Problems
A high-resolution, total variation diminishing (TVD) stable scheme is derived for scalar hyperbolic problems using the method of flux limiters. The scheme was constructed by combining the 1st-order upwind scheme and the 3rd-order quadratic upstream interpolation scheme (QUICK) using new flux limiter...
Gespeichert in:
Veröffentlicht in: | Journal of Computational Engineering 2015-07, Vol.2015, p.1-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Journal of Computational Engineering |
container_volume | 2015 |
creator | Abu Saleem, Rabie A. Kozlowski, Tomasz |
description | A high-resolution, total variation diminishing (TVD) stable scheme is derived for scalar hyperbolic problems using the method of flux limiters. The scheme was constructed by combining the 1st-order upwind scheme and the 3rd-order quadratic upstream interpolation scheme (QUICK) using new flux limiter function. The new flux limiter function was established by imposing several conditions to ensure the TVD properties of the scheme. For temporal discretization, the theta method was used, and values for the parameter θ were chosen such that the scheme is unconditionally stable. Numerical results are presented for one-dimensional pure advection problems with smooth and discontinuous initial conditions and are compared to those of other known numerical schemes. The results show that the proposed numerical method is stable and of higher order than other common schemes. |
doi_str_mv | 10.1155/2015/575380 |
format | Article |
fullrecord | <record><control><sourceid>crossref_hinda</sourceid><recordid>TN_cdi_crossref_primary_10_1155_2015_575380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1155_2015_575380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1500-f97d752f91b062de575f633797331a2ef8354f8af4e1dd3a0276ab5016d1275c3</originalsourceid><addsrcrecordid>eNp9kNFKwzAUhoMoOOaufIFcK3UnSZO0l7LpJgwUnd7WtD1ZI20zkqns7e2c116dc-Dj5_wfIZcMbhiTcsqByanUUmRwQkZcsDRRaSpOD7tUieYKzskkxg-AgYQctBiR9zl-Yeu3HfY76i1duk2TPGP07efO-Z6u_c609M0EZ37vuetc72Lj-g19qRrskFof6Mr1aAJd7rcYSt-6ij4FX7bYxQtyZk0bcfI3x-T1_m49Wyarx8XD7HaVVMMvkNhc11pym7MSFK9x6GGVEDrXQjDD0WZCpjYzNkVW18IA18qUEpiqGdeyEmNyfcytgo8xoC22wXUm7AsGxcFPcfBTHP0M9NWRHorU5tv9C_8ALxJkdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development of High-Resolution Total Variation Diminishing Scheme for Linear Hyperbolic Problems</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Abu Saleem, Rabie A. ; Kozlowski, Tomasz</creator><contributor>Kok, Jim B. W.</contributor><creatorcontrib>Abu Saleem, Rabie A. ; Kozlowski, Tomasz ; Kok, Jim B. W.</creatorcontrib><description>A high-resolution, total variation diminishing (TVD) stable scheme is derived for scalar hyperbolic problems using the method of flux limiters. The scheme was constructed by combining the 1st-order upwind scheme and the 3rd-order quadratic upstream interpolation scheme (QUICK) using new flux limiter function. The new flux limiter function was established by imposing several conditions to ensure the TVD properties of the scheme. For temporal discretization, the theta method was used, and values for the parameter θ were chosen such that the scheme is unconditionally stable. Numerical results are presented for one-dimensional pure advection problems with smooth and discontinuous initial conditions and are compared to those of other known numerical schemes. The results show that the proposed numerical method is stable and of higher order than other common schemes.</description><identifier>ISSN: 2356-7260</identifier><identifier>EISSN: 2314-6443</identifier><identifier>DOI: 10.1155/2015/575380</identifier><language>eng</language><publisher>Hindawi Publishing Corporation</publisher><ispartof>Journal of Computational Engineering, 2015-07, Vol.2015, p.1-10</ispartof><rights>Copyright © 2015 Rabie A. Abu Saleem and Tomasz Kozlowski.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1500-f97d752f91b062de575f633797331a2ef8354f8af4e1dd3a0276ab5016d1275c3</citedby><cites>FETCH-LOGICAL-c1500-f97d752f91b062de575f633797331a2ef8354f8af4e1dd3a0276ab5016d1275c3</cites><orcidid>0000-0001-9317-5309</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Kok, Jim B. W.</contributor><creatorcontrib>Abu Saleem, Rabie A.</creatorcontrib><creatorcontrib>Kozlowski, Tomasz</creatorcontrib><title>Development of High-Resolution Total Variation Diminishing Scheme for Linear Hyperbolic Problems</title><title>Journal of Computational Engineering</title><description>A high-resolution, total variation diminishing (TVD) stable scheme is derived for scalar hyperbolic problems using the method of flux limiters. The scheme was constructed by combining the 1st-order upwind scheme and the 3rd-order quadratic upstream interpolation scheme (QUICK) using new flux limiter function. The new flux limiter function was established by imposing several conditions to ensure the TVD properties of the scheme. For temporal discretization, the theta method was used, and values for the parameter θ were chosen such that the scheme is unconditionally stable. Numerical results are presented for one-dimensional pure advection problems with smooth and discontinuous initial conditions and are compared to those of other known numerical schemes. The results show that the proposed numerical method is stable and of higher order than other common schemes.</description><issn>2356-7260</issn><issn>2314-6443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kNFKwzAUhoMoOOaufIFcK3UnSZO0l7LpJgwUnd7WtD1ZI20zkqns7e2c116dc-Dj5_wfIZcMbhiTcsqByanUUmRwQkZcsDRRaSpOD7tUieYKzskkxg-AgYQctBiR9zl-Yeu3HfY76i1duk2TPGP07efO-Z6u_c609M0EZ37vuetc72Lj-g19qRrskFof6Mr1aAJd7rcYSt-6ij4FX7bYxQtyZk0bcfI3x-T1_m49Wyarx8XD7HaVVMMvkNhc11pym7MSFK9x6GGVEDrXQjDD0WZCpjYzNkVW18IA18qUEpiqGdeyEmNyfcytgo8xoC22wXUm7AsGxcFPcfBTHP0M9NWRHorU5tv9C_8ALxJkdQ</recordid><startdate>20150722</startdate><enddate>20150722</enddate><creator>Abu Saleem, Rabie A.</creator><creator>Kozlowski, Tomasz</creator><general>Hindawi Publishing Corporation</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9317-5309</orcidid></search><sort><creationdate>20150722</creationdate><title>Development of High-Resolution Total Variation Diminishing Scheme for Linear Hyperbolic Problems</title><author>Abu Saleem, Rabie A. ; Kozlowski, Tomasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1500-f97d752f91b062de575f633797331a2ef8354f8af4e1dd3a0276ab5016d1275c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abu Saleem, Rabie A.</creatorcontrib><creatorcontrib>Kozlowski, Tomasz</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><jtitle>Journal of Computational Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abu Saleem, Rabie A.</au><au>Kozlowski, Tomasz</au><au>Kok, Jim B. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of High-Resolution Total Variation Diminishing Scheme for Linear Hyperbolic Problems</atitle><jtitle>Journal of Computational Engineering</jtitle><date>2015-07-22</date><risdate>2015</risdate><volume>2015</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2356-7260</issn><eissn>2314-6443</eissn><abstract>A high-resolution, total variation diminishing (TVD) stable scheme is derived for scalar hyperbolic problems using the method of flux limiters. The scheme was constructed by combining the 1st-order upwind scheme and the 3rd-order quadratic upstream interpolation scheme (QUICK) using new flux limiter function. The new flux limiter function was established by imposing several conditions to ensure the TVD properties of the scheme. For temporal discretization, the theta method was used, and values for the parameter θ were chosen such that the scheme is unconditionally stable. Numerical results are presented for one-dimensional pure advection problems with smooth and discontinuous initial conditions and are compared to those of other known numerical schemes. The results show that the proposed numerical method is stable and of higher order than other common schemes.</abstract><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2015/575380</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9317-5309</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2356-7260 |
ispartof | Journal of Computational Engineering, 2015-07, Vol.2015, p.1-10 |
issn | 2356-7260 2314-6443 |
language | eng |
recordid | cdi_crossref_primary_10_1155_2015_575380 |
source | Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
title | Development of High-Resolution Total Variation Diminishing Scheme for Linear Hyperbolic Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A22%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_hinda&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20High-Resolution%20Total%20Variation%20Diminishing%20Scheme%20for%20Linear%20Hyperbolic%20Problems&rft.jtitle=Journal%20of%20Computational%20Engineering&rft.au=Abu%20Saleem,%20Rabie%20A.&rft.date=2015-07-22&rft.volume=2015&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2356-7260&rft.eissn=2314-6443&rft_id=info:doi/10.1155/2015/575380&rft_dat=%3Ccrossref_hinda%3E10_1155_2015_575380%3C/crossref_hinda%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |