Uncertainty Analysis in Population-Based Disease Microsimulation Models

Objective. Uncertainty analysis (UA) is an important part of simulation model validation. However, literature is imprecise as to how UA should be performed in the context of population-based microsimulation (PMS) models. In this expository paper, we discuss a practical approach to UA for such models...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Epidemiology research international 2012-07, Vol.2012 (2012), p.1-14
Hauptverfasser: Sharif, Behnam, Kopec, Jacek A., Wong, Hubert, Finès, Philippe, Sayre, Eric C., Liu, Ran R., Wolfson, Michael C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 2012
container_start_page 1
container_title Epidemiology research international
container_volume 2012
creator Sharif, Behnam
Kopec, Jacek A.
Wong, Hubert
Finès, Philippe
Sayre, Eric C.
Liu, Ran R.
Wolfson, Michael C.
description Objective. Uncertainty analysis (UA) is an important part of simulation model validation. However, literature is imprecise as to how UA should be performed in the context of population-based microsimulation (PMS) models. In this expository paper, we discuss a practical approach to UA for such models. Methods. By adapting common concepts from published UA guidelines, we developed a comprehensive, step-by-step approach to UA in PMS models, including sample size calculation to reduce the computational time. As an illustration, we performed UA for POHEM-OA, a microsimulation model of osteoarthritis (OA) in Canada. Results. The resulting sample size of the simulated population was 500,000 and the number of Monte Carlo (MC) runs was 785 for 12-hour computational time. The estimated 95% uncertainty intervals for the prevalence of OA in Canada in 2021 were 0.09 to 0.18 for men and 0.15 to 0.23 for women. The uncertainty surrounding the sex-specific prevalence of OA increased over time. Conclusion. The proposed approach to UA considers the challenges specific to PMS models, such as selection of parameters and calculation of MC runs and population size to reduce computational burden. Our example of UA shows that the proposed approach is feasible. Estimation of uncertainty intervals should become a standard practice in the reporting of results from PMS models.
doi_str_mv 10.1155/2012/610405
format Article
fullrecord <record><control><sourceid>emarefa_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1155_2012_610405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>484939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1725-72f53a7eb444a046e4e9aa9813278d94d8515fc386e6d2a98a168f5e8ddcee293</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsNSePAt7VmJ3N_t5rFWr0KIHew5jdhZX0qRkI5J_b0pKr85lXngfhuEh5Jqze86VmgvGxVxzJpk6IxPBHMuEs-z8lI24JLOUvtkw2kqjzISstnWJbQex7nq6qKHqU0w01vS92f9U0MWmzh4goaePMeEQ6CaWbZPi7tjSTeOxSlfkIkCVcHbcU7J9fvpYvmTrt9XrcrHOSm6EyowIKgeDn1JKYFKjRAfgLM-Fsd5JbxVXocytRu3FUADXNii03peIwuVTcjfePTyRWgzFvo07aPuCs-KgoThoKEYNA3070l-x9vAb_4FvRhgHBAOcYGmly13-B5uDZd0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uncertainty Analysis in Population-Based Disease Microsimulation Models</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Sharif, Behnam ; Kopec, Jacek A. ; Wong, Hubert ; Finès, Philippe ; Sayre, Eric C. ; Liu, Ran R. ; Wolfson, Michael C.</creator><contributor>Rutter, Carolyn</contributor><creatorcontrib>Sharif, Behnam ; Kopec, Jacek A. ; Wong, Hubert ; Finès, Philippe ; Sayre, Eric C. ; Liu, Ran R. ; Wolfson, Michael C. ; Rutter, Carolyn</creatorcontrib><description>Objective. Uncertainty analysis (UA) is an important part of simulation model validation. However, literature is imprecise as to how UA should be performed in the context of population-based microsimulation (PMS) models. In this expository paper, we discuss a practical approach to UA for such models. Methods. By adapting common concepts from published UA guidelines, we developed a comprehensive, step-by-step approach to UA in PMS models, including sample size calculation to reduce the computational time. As an illustration, we performed UA for POHEM-OA, a microsimulation model of osteoarthritis (OA) in Canada. Results. The resulting sample size of the simulated population was 500,000 and the number of Monte Carlo (MC) runs was 785 for 12-hour computational time. The estimated 95% uncertainty intervals for the prevalence of OA in Canada in 2021 were 0.09 to 0.18 for men and 0.15 to 0.23 for women. The uncertainty surrounding the sex-specific prevalence of OA increased over time. Conclusion. The proposed approach to UA considers the challenges specific to PMS models, such as selection of parameters and calculation of MC runs and population size to reduce computational burden. Our example of UA shows that the proposed approach is feasible. Estimation of uncertainty intervals should become a standard practice in the reporting of results from PMS models.</description><identifier>ISSN: 2090-2972</identifier><identifier>EISSN: 2090-2980</identifier><identifier>DOI: 10.1155/2012/610405</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><ispartof>Epidemiology research international, 2012-07, Vol.2012 (2012), p.1-14</ispartof><rights>Copyright © 2012 Behnam Sharif et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1725-72f53a7eb444a046e4e9aa9813278d94d8515fc386e6d2a98a168f5e8ddcee293</citedby><cites>FETCH-LOGICAL-c1725-72f53a7eb444a046e4e9aa9813278d94d8515fc386e6d2a98a168f5e8ddcee293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><contributor>Rutter, Carolyn</contributor><creatorcontrib>Sharif, Behnam</creatorcontrib><creatorcontrib>Kopec, Jacek A.</creatorcontrib><creatorcontrib>Wong, Hubert</creatorcontrib><creatorcontrib>Finès, Philippe</creatorcontrib><creatorcontrib>Sayre, Eric C.</creatorcontrib><creatorcontrib>Liu, Ran R.</creatorcontrib><creatorcontrib>Wolfson, Michael C.</creatorcontrib><title>Uncertainty Analysis in Population-Based Disease Microsimulation Models</title><title>Epidemiology research international</title><description>Objective. Uncertainty analysis (UA) is an important part of simulation model validation. However, literature is imprecise as to how UA should be performed in the context of population-based microsimulation (PMS) models. In this expository paper, we discuss a practical approach to UA for such models. Methods. By adapting common concepts from published UA guidelines, we developed a comprehensive, step-by-step approach to UA in PMS models, including sample size calculation to reduce the computational time. As an illustration, we performed UA for POHEM-OA, a microsimulation model of osteoarthritis (OA) in Canada. Results. The resulting sample size of the simulated population was 500,000 and the number of Monte Carlo (MC) runs was 785 for 12-hour computational time. The estimated 95% uncertainty intervals for the prevalence of OA in Canada in 2021 were 0.09 to 0.18 for men and 0.15 to 0.23 for women. The uncertainty surrounding the sex-specific prevalence of OA increased over time. Conclusion. The proposed approach to UA considers the challenges specific to PMS models, such as selection of parameters and calculation of MC runs and population size to reduce computational burden. Our example of UA shows that the proposed approach is feasible. Estimation of uncertainty intervals should become a standard practice in the reporting of results from PMS models.</description><issn>2090-2972</issn><issn>2090-2980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqFkE1Lw0AQhhdRsNSePAt7VmJ3N_t5rFWr0KIHew5jdhZX0qRkI5J_b0pKr85lXngfhuEh5Jqze86VmgvGxVxzJpk6IxPBHMuEs-z8lI24JLOUvtkw2kqjzISstnWJbQex7nq6qKHqU0w01vS92f9U0MWmzh4goaePMeEQ6CaWbZPi7tjSTeOxSlfkIkCVcHbcU7J9fvpYvmTrt9XrcrHOSm6EyowIKgeDn1JKYFKjRAfgLM-Fsd5JbxVXocytRu3FUADXNii03peIwuVTcjfePTyRWgzFvo07aPuCs-KgoThoKEYNA3070l-x9vAb_4FvRhgHBAOcYGmly13-B5uDZd0</recordid><startdate>20120725</startdate><enddate>20120725</enddate><creator>Sharif, Behnam</creator><creator>Kopec, Jacek A.</creator><creator>Wong, Hubert</creator><creator>Finès, Philippe</creator><creator>Sayre, Eric C.</creator><creator>Liu, Ran R.</creator><creator>Wolfson, Michael C.</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120725</creationdate><title>Uncertainty Analysis in Population-Based Disease Microsimulation Models</title><author>Sharif, Behnam ; Kopec, Jacek A. ; Wong, Hubert ; Finès, Philippe ; Sayre, Eric C. ; Liu, Ran R. ; Wolfson, Michael C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1725-72f53a7eb444a046e4e9aa9813278d94d8515fc386e6d2a98a168f5e8ddcee293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharif, Behnam</creatorcontrib><creatorcontrib>Kopec, Jacek A.</creatorcontrib><creatorcontrib>Wong, Hubert</creatorcontrib><creatorcontrib>Finès, Philippe</creatorcontrib><creatorcontrib>Sayre, Eric C.</creatorcontrib><creatorcontrib>Liu, Ran R.</creatorcontrib><creatorcontrib>Wolfson, Michael C.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><jtitle>Epidemiology research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharif, Behnam</au><au>Kopec, Jacek A.</au><au>Wong, Hubert</au><au>Finès, Philippe</au><au>Sayre, Eric C.</au><au>Liu, Ran R.</au><au>Wolfson, Michael C.</au><au>Rutter, Carolyn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty Analysis in Population-Based Disease Microsimulation Models</atitle><jtitle>Epidemiology research international</jtitle><date>2012-07-25</date><risdate>2012</risdate><volume>2012</volume><issue>2012</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>2090-2972</issn><eissn>2090-2980</eissn><abstract>Objective. Uncertainty analysis (UA) is an important part of simulation model validation. However, literature is imprecise as to how UA should be performed in the context of population-based microsimulation (PMS) models. In this expository paper, we discuss a practical approach to UA for such models. Methods. By adapting common concepts from published UA guidelines, we developed a comprehensive, step-by-step approach to UA in PMS models, including sample size calculation to reduce the computational time. As an illustration, we performed UA for POHEM-OA, a microsimulation model of osteoarthritis (OA) in Canada. Results. The resulting sample size of the simulated population was 500,000 and the number of Monte Carlo (MC) runs was 785 for 12-hour computational time. The estimated 95% uncertainty intervals for the prevalence of OA in Canada in 2021 were 0.09 to 0.18 for men and 0.15 to 0.23 for women. The uncertainty surrounding the sex-specific prevalence of OA increased over time. Conclusion. The proposed approach to UA considers the challenges specific to PMS models, such as selection of parameters and calculation of MC runs and population size to reduce computational burden. Our example of UA shows that the proposed approach is feasible. Estimation of uncertainty intervals should become a standard practice in the reporting of results from PMS models.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.1155/2012/610405</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2090-2972
ispartof Epidemiology research international, 2012-07, Vol.2012 (2012), p.1-14
issn 2090-2972
2090-2980
language eng
recordid cdi_crossref_primary_10_1155_2012_610405
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
title Uncertainty Analysis in Population-Based Disease Microsimulation Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emarefa_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20Analysis%20in%20Population-Based%20Disease%20Microsimulation%20Models&rft.jtitle=Epidemiology%20research%20international&rft.au=Sharif,%20Behnam&rft.date=2012-07-25&rft.volume=2012&rft.issue=2012&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=2090-2972&rft.eissn=2090-2980&rft_id=info:doi/10.1155/2012/610405&rft_dat=%3Cemarefa_cross%3E484939%3C/emarefa_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true