Uncertainty Analysis in Population-Based Disease Microsimulation Models
Objective. Uncertainty analysis (UA) is an important part of simulation model validation. However, literature is imprecise as to how UA should be performed in the context of population-based microsimulation (PMS) models. In this expository paper, we discuss a practical approach to UA for such models...
Gespeichert in:
Veröffentlicht in: | Epidemiology research international 2012-07, Vol.2012 (2012), p.1-14 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 2012 |
container_start_page | 1 |
container_title | Epidemiology research international |
container_volume | 2012 |
creator | Sharif, Behnam Kopec, Jacek A. Wong, Hubert Finès, Philippe Sayre, Eric C. Liu, Ran R. Wolfson, Michael C. |
description | Objective. Uncertainty analysis (UA) is an important part of simulation model validation. However, literature is imprecise as to how UA should be performed in the context of population-based microsimulation (PMS) models. In this expository paper, we discuss a practical approach to UA for such models. Methods. By adapting common concepts from published UA guidelines, we developed a comprehensive, step-by-step approach to UA in PMS models, including sample size calculation to reduce the computational time. As an illustration, we performed UA for POHEM-OA, a microsimulation model of osteoarthritis (OA) in Canada. Results. The resulting sample size of the simulated population was 500,000 and the number of Monte Carlo (MC) runs was 785 for 12-hour computational time. The estimated 95% uncertainty intervals for the prevalence of OA in Canada in 2021 were 0.09 to 0.18 for men and 0.15 to 0.23 for women. The uncertainty surrounding the sex-specific prevalence of OA increased over time. Conclusion. The proposed approach to UA considers the challenges specific to PMS models, such as selection of parameters and calculation of MC runs and population size to reduce computational burden. Our example of UA shows that the proposed approach is feasible. Estimation of uncertainty intervals should become a standard practice in the reporting of results from PMS models. |
doi_str_mv | 10.1155/2012/610405 |
format | Article |
fullrecord | <record><control><sourceid>emarefa_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1155_2012_610405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>484939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1725-72f53a7eb444a046e4e9aa9813278d94d8515fc386e6d2a98a168f5e8ddcee293</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsNSePAt7VmJ3N_t5rFWr0KIHew5jdhZX0qRkI5J_b0pKr85lXngfhuEh5Jqze86VmgvGxVxzJpk6IxPBHMuEs-z8lI24JLOUvtkw2kqjzISstnWJbQex7nq6qKHqU0w01vS92f9U0MWmzh4goaePMeEQ6CaWbZPi7tjSTeOxSlfkIkCVcHbcU7J9fvpYvmTrt9XrcrHOSm6EyowIKgeDn1JKYFKjRAfgLM-Fsd5JbxVXocytRu3FUADXNii03peIwuVTcjfePTyRWgzFvo07aPuCs-KgoThoKEYNA3070l-x9vAb_4FvRhgHBAOcYGmly13-B5uDZd0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uncertainty Analysis in Population-Based Disease Microsimulation Models</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Sharif, Behnam ; Kopec, Jacek A. ; Wong, Hubert ; Finès, Philippe ; Sayre, Eric C. ; Liu, Ran R. ; Wolfson, Michael C.</creator><contributor>Rutter, Carolyn</contributor><creatorcontrib>Sharif, Behnam ; Kopec, Jacek A. ; Wong, Hubert ; Finès, Philippe ; Sayre, Eric C. ; Liu, Ran R. ; Wolfson, Michael C. ; Rutter, Carolyn</creatorcontrib><description>Objective. Uncertainty analysis (UA) is an important part of simulation model validation. However, literature is imprecise as to how UA should be performed in the context of population-based microsimulation (PMS) models. In this expository paper, we discuss a practical approach to UA for such models. Methods. By adapting common concepts from published UA guidelines, we developed a comprehensive, step-by-step approach to UA in PMS models, including sample size calculation to reduce the computational time. As an illustration, we performed UA for POHEM-OA, a microsimulation model of osteoarthritis (OA) in Canada. Results. The resulting sample size of the simulated population was 500,000 and the number of Monte Carlo (MC) runs was 785 for 12-hour computational time. The estimated 95% uncertainty intervals for the prevalence of OA in Canada in 2021 were 0.09 to 0.18 for men and 0.15 to 0.23 for women. The uncertainty surrounding the sex-specific prevalence of OA increased over time. Conclusion. The proposed approach to UA considers the challenges specific to PMS models, such as selection of parameters and calculation of MC runs and population size to reduce computational burden. Our example of UA shows that the proposed approach is feasible. Estimation of uncertainty intervals should become a standard practice in the reporting of results from PMS models.</description><identifier>ISSN: 2090-2972</identifier><identifier>EISSN: 2090-2980</identifier><identifier>DOI: 10.1155/2012/610405</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><ispartof>Epidemiology research international, 2012-07, Vol.2012 (2012), p.1-14</ispartof><rights>Copyright © 2012 Behnam Sharif et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1725-72f53a7eb444a046e4e9aa9813278d94d8515fc386e6d2a98a168f5e8ddcee293</citedby><cites>FETCH-LOGICAL-c1725-72f53a7eb444a046e4e9aa9813278d94d8515fc386e6d2a98a168f5e8ddcee293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><contributor>Rutter, Carolyn</contributor><creatorcontrib>Sharif, Behnam</creatorcontrib><creatorcontrib>Kopec, Jacek A.</creatorcontrib><creatorcontrib>Wong, Hubert</creatorcontrib><creatorcontrib>Finès, Philippe</creatorcontrib><creatorcontrib>Sayre, Eric C.</creatorcontrib><creatorcontrib>Liu, Ran R.</creatorcontrib><creatorcontrib>Wolfson, Michael C.</creatorcontrib><title>Uncertainty Analysis in Population-Based Disease Microsimulation Models</title><title>Epidemiology research international</title><description>Objective. Uncertainty analysis (UA) is an important part of simulation model validation. However, literature is imprecise as to how UA should be performed in the context of population-based microsimulation (PMS) models. In this expository paper, we discuss a practical approach to UA for such models. Methods. By adapting common concepts from published UA guidelines, we developed a comprehensive, step-by-step approach to UA in PMS models, including sample size calculation to reduce the computational time. As an illustration, we performed UA for POHEM-OA, a microsimulation model of osteoarthritis (OA) in Canada. Results. The resulting sample size of the simulated population was 500,000 and the number of Monte Carlo (MC) runs was 785 for 12-hour computational time. The estimated 95% uncertainty intervals for the prevalence of OA in Canada in 2021 were 0.09 to 0.18 for men and 0.15 to 0.23 for women. The uncertainty surrounding the sex-specific prevalence of OA increased over time. Conclusion. The proposed approach to UA considers the challenges specific to PMS models, such as selection of parameters and calculation of MC runs and population size to reduce computational burden. Our example of UA shows that the proposed approach is feasible. Estimation of uncertainty intervals should become a standard practice in the reporting of results from PMS models.</description><issn>2090-2972</issn><issn>2090-2980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqFkE1Lw0AQhhdRsNSePAt7VmJ3N_t5rFWr0KIHew5jdhZX0qRkI5J_b0pKr85lXngfhuEh5Jqze86VmgvGxVxzJpk6IxPBHMuEs-z8lI24JLOUvtkw2kqjzISstnWJbQex7nq6qKHqU0w01vS92f9U0MWmzh4goaePMeEQ6CaWbZPi7tjSTeOxSlfkIkCVcHbcU7J9fvpYvmTrt9XrcrHOSm6EyowIKgeDn1JKYFKjRAfgLM-Fsd5JbxVXocytRu3FUADXNii03peIwuVTcjfePTyRWgzFvo07aPuCs-KgoThoKEYNA3070l-x9vAb_4FvRhgHBAOcYGmly13-B5uDZd0</recordid><startdate>20120725</startdate><enddate>20120725</enddate><creator>Sharif, Behnam</creator><creator>Kopec, Jacek A.</creator><creator>Wong, Hubert</creator><creator>Finès, Philippe</creator><creator>Sayre, Eric C.</creator><creator>Liu, Ran R.</creator><creator>Wolfson, Michael C.</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120725</creationdate><title>Uncertainty Analysis in Population-Based Disease Microsimulation Models</title><author>Sharif, Behnam ; Kopec, Jacek A. ; Wong, Hubert ; Finès, Philippe ; Sayre, Eric C. ; Liu, Ran R. ; Wolfson, Michael C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1725-72f53a7eb444a046e4e9aa9813278d94d8515fc386e6d2a98a168f5e8ddcee293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharif, Behnam</creatorcontrib><creatorcontrib>Kopec, Jacek A.</creatorcontrib><creatorcontrib>Wong, Hubert</creatorcontrib><creatorcontrib>Finès, Philippe</creatorcontrib><creatorcontrib>Sayre, Eric C.</creatorcontrib><creatorcontrib>Liu, Ran R.</creatorcontrib><creatorcontrib>Wolfson, Michael C.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><jtitle>Epidemiology research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharif, Behnam</au><au>Kopec, Jacek A.</au><au>Wong, Hubert</au><au>Finès, Philippe</au><au>Sayre, Eric C.</au><au>Liu, Ran R.</au><au>Wolfson, Michael C.</au><au>Rutter, Carolyn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty Analysis in Population-Based Disease Microsimulation Models</atitle><jtitle>Epidemiology research international</jtitle><date>2012-07-25</date><risdate>2012</risdate><volume>2012</volume><issue>2012</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>2090-2972</issn><eissn>2090-2980</eissn><abstract>Objective. Uncertainty analysis (UA) is an important part of simulation model validation. However, literature is imprecise as to how UA should be performed in the context of population-based microsimulation (PMS) models. In this expository paper, we discuss a practical approach to UA for such models. Methods. By adapting common concepts from published UA guidelines, we developed a comprehensive, step-by-step approach to UA in PMS models, including sample size calculation to reduce the computational time. As an illustration, we performed UA for POHEM-OA, a microsimulation model of osteoarthritis (OA) in Canada. Results. The resulting sample size of the simulated population was 500,000 and the number of Monte Carlo (MC) runs was 785 for 12-hour computational time. The estimated 95% uncertainty intervals for the prevalence of OA in Canada in 2021 were 0.09 to 0.18 for men and 0.15 to 0.23 for women. The uncertainty surrounding the sex-specific prevalence of OA increased over time. Conclusion. The proposed approach to UA considers the challenges specific to PMS models, such as selection of parameters and calculation of MC runs and population size to reduce computational burden. Our example of UA shows that the proposed approach is feasible. Estimation of uncertainty intervals should become a standard practice in the reporting of results from PMS models.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.1155/2012/610405</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2090-2972 |
ispartof | Epidemiology research international, 2012-07, Vol.2012 (2012), p.1-14 |
issn | 2090-2972 2090-2980 |
language | eng |
recordid | cdi_crossref_primary_10_1155_2012_610405 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
title | Uncertainty Analysis in Population-Based Disease Microsimulation Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emarefa_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20Analysis%20in%20Population-Based%20Disease%20Microsimulation%20Models&rft.jtitle=Epidemiology%20research%20international&rft.au=Sharif,%20Behnam&rft.date=2012-07-25&rft.volume=2012&rft.issue=2012&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=2090-2972&rft.eissn=2090-2980&rft_id=info:doi/10.1155/2012/610405&rft_dat=%3Cemarefa_cross%3E484939%3C/emarefa_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |