A Numerical Method for Two-Stage Stochastic Programs under Uncertainty

Motivated by problems coming from planning and operational management in power generation companies, this work extends the traditional two-stage linear stochastic program by adding probabilistic constraints in the second stage. In this work we describe, under special assumptions, how the two-stage s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Problems in Engineering 2011-01, Vol.2011 (1), p.564-576-233
1. Verfasser: Bosch, Paul
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 576-233
container_issue 1
container_start_page 564
container_title Mathematical Problems in Engineering
container_volume 2011
creator Bosch, Paul
description Motivated by problems coming from planning and operational management in power generation companies, this work extends the traditional two-stage linear stochastic program by adding probabilistic constraints in the second stage. In this work we describe, under special assumptions, how the two-stage stochastic programs with mixed probabilities can be treated computationally. We obtain a convex conservative approximations of the chance constraints defined in second stage of our model and use Monte Carlo simulation techniques for approximating the expectation function in the first stage by the average. This approach raises with another question: how to solve the linear program with the convex conservative approximation (nonlinear constrains) for each scenario?
doi_str_mv 10.1155/2011/840137
format Article
fullrecord <record><control><sourceid>airiti_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1155_2011_840137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20161117002_201112_201703220005_201703220005_564_576_233</airiti_id><sourcerecordid>P20161117002_201112_201703220005_201703220005_564_576_233</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-2af4f6624cd90c82abdc2075c6684430e34a1460b7b7614e84e0518aba4ecf253</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKsn_0DOytqZfK7HUqwKfhTagreQZrNtSrsr2ZTSf--268WTp3cGnhlmHkJuER4QpRwwQBzkApDrM9JDqXgmUejztgYmMmT865JcNc0agKHEvEfGQ_qx2_oYnN3Qd59WdUHLOtLZvs6myS49nabarWyTgqOTWC-j3TZ0VxU-0nnlfEw2VOlwTS5Ku2n8zW_2yXz8NBu9ZG-fz6-j4VtmOVcpY7YUpVJMuOIRXM7sonAMtHRK5UJw8FxYFAoWeqEVCp8LD-2ZdmGFdyWTvE_uu70u1k0TfWm-Y9jaeDAI5qjAHBWYTkFL33X0KlSF3Yd_4EkH2xBDCmZd72LV_mImLaUQUbfSThN4Cg2cMQCQfxuphJFaGcY5_wG6V2-K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Numerical Method for Two-Stage Stochastic Programs under Uncertainty</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Bosch, Paul</creator><contributor>Luongo, Angelo</contributor><creatorcontrib>Bosch, Paul ; Luongo, Angelo</creatorcontrib><description>Motivated by problems coming from planning and operational management in power generation companies, this work extends the traditional two-stage linear stochastic program by adding probabilistic constraints in the second stage. In this work we describe, under special assumptions, how the two-stage stochastic programs with mixed probabilities can be treated computationally. We obtain a convex conservative approximations of the chance constraints defined in second stage of our model and use Monte Carlo simulation techniques for approximating the expectation function in the first stage by the average. This approach raises with another question: how to solve the linear program with the convex conservative approximation (nonlinear constrains) for each scenario?</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2011/840137</identifier><language>eng</language><publisher>Hindawi Limiteds</publisher><ispartof>Mathematical Problems in Engineering, 2011-01, Vol.2011 (1), p.564-576-233</ispartof><rights>Copyright © 2011 Paul Bosch.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a336t-2af4f6624cd90c82abdc2075c6684430e34a1460b7b7614e84e0518aba4ecf253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><contributor>Luongo, Angelo</contributor><creatorcontrib>Bosch, Paul</creatorcontrib><title>A Numerical Method for Two-Stage Stochastic Programs under Uncertainty</title><title>Mathematical Problems in Engineering</title><description>Motivated by problems coming from planning and operational management in power generation companies, this work extends the traditional two-stage linear stochastic program by adding probabilistic constraints in the second stage. In this work we describe, under special assumptions, how the two-stage stochastic programs with mixed probabilities can be treated computationally. We obtain a convex conservative approximations of the chance constraints defined in second stage of our model and use Monte Carlo simulation techniques for approximating the expectation function in the first stage by the average. This approach raises with another question: how to solve the linear program with the convex conservative approximation (nonlinear constrains) for each scenario?</description><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqFkE1LAzEQhoMoWKsn_0DOytqZfK7HUqwKfhTagreQZrNtSrsr2ZTSf--268WTp3cGnhlmHkJuER4QpRwwQBzkApDrM9JDqXgmUejztgYmMmT865JcNc0agKHEvEfGQ_qx2_oYnN3Qd59WdUHLOtLZvs6myS49nabarWyTgqOTWC-j3TZ0VxU-0nnlfEw2VOlwTS5Ku2n8zW_2yXz8NBu9ZG-fz6-j4VtmOVcpY7YUpVJMuOIRXM7sonAMtHRK5UJw8FxYFAoWeqEVCp8LD-2ZdmGFdyWTvE_uu70u1k0TfWm-Y9jaeDAI5qjAHBWYTkFL33X0KlSF3Yd_4EkH2xBDCmZd72LV_mImLaUQUbfSThN4Cg2cMQCQfxuphJFaGcY5_wG6V2-K</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Bosch, Paul</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><scope>188</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110101</creationdate><title>A Numerical Method for Two-Stage Stochastic Programs under Uncertainty</title><author>Bosch, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-2af4f6624cd90c82abdc2075c6684430e34a1460b7b7614e84e0518aba4ecf253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bosch, Paul</creatorcontrib><collection>Airiti Library</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><jtitle>Mathematical Problems in Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bosch, Paul</au><au>Luongo, Angelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Numerical Method for Two-Stage Stochastic Programs under Uncertainty</atitle><jtitle>Mathematical Problems in Engineering</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>2011</volume><issue>1</issue><spage>564</spage><epage>576-233</epage><pages>564-576-233</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Motivated by problems coming from planning and operational management in power generation companies, this work extends the traditional two-stage linear stochastic program by adding probabilistic constraints in the second stage. In this work we describe, under special assumptions, how the two-stage stochastic programs with mixed probabilities can be treated computationally. We obtain a convex conservative approximations of the chance constraints defined in second stage of our model and use Monte Carlo simulation techniques for approximating the expectation function in the first stage by the average. This approach raises with another question: how to solve the linear program with the convex conservative approximation (nonlinear constrains) for each scenario?</abstract><pub>Hindawi Limiteds</pub><doi>10.1155/2011/840137</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical Problems in Engineering, 2011-01, Vol.2011 (1), p.564-576-233
issn 1024-123X
1563-5147
language eng
recordid cdi_crossref_primary_10_1155_2011_840137
source Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title A Numerical Method for Two-Stage Stochastic Programs under Uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A36%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-airiti_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Numerical%20Method%20for%20Two-Stage%20Stochastic%20Programs%20under%20Uncertainty&rft.jtitle=Mathematical%20Problems%20in%20Engineering&rft.au=Bosch,%20Paul&rft.date=2011-01-01&rft.volume=2011&rft.issue=1&rft.spage=564&rft.epage=576-233&rft.pages=564-576-233&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2011/840137&rft_dat=%3Cairiti_cross%3EP20161117002_201112_201703220005_201703220005_564_576_233%3C/airiti_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_airiti_id=P20161117002_201112_201703220005_201703220005_564_576_233&rfr_iscdi=true