A Numerical Method for Two-Stage Stochastic Programs under Uncertainty
Motivated by problems coming from planning and operational management in power generation companies, this work extends the traditional two-stage linear stochastic program by adding probabilistic constraints in the second stage. In this work we describe, under special assumptions, how the two-stage s...
Gespeichert in:
Veröffentlicht in: | Mathematical Problems in Engineering 2011-01, Vol.2011 (1), p.564-576-233 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 576-233 |
---|---|
container_issue | 1 |
container_start_page | 564 |
container_title | Mathematical Problems in Engineering |
container_volume | 2011 |
creator | Bosch, Paul |
description | Motivated by problems coming from planning and operational management in power generation companies, this work extends the traditional two-stage linear stochastic program by adding probabilistic constraints in the second stage. In this work we describe, under special assumptions, how the two-stage stochastic programs with mixed probabilities can be treated computationally. We obtain a convex conservative approximations of the chance constraints defined in second stage of our model and use Monte Carlo simulation techniques for approximating the expectation function in the first stage by the average. This approach raises with another question: how to solve the linear program with the convex conservative approximation (nonlinear constrains) for each scenario? |
doi_str_mv | 10.1155/2011/840137 |
format | Article |
fullrecord | <record><control><sourceid>airiti_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1155_2011_840137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20161117002_201112_201703220005_201703220005_564_576_233</airiti_id><sourcerecordid>P20161117002_201112_201703220005_201703220005_564_576_233</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-2af4f6624cd90c82abdc2075c6684430e34a1460b7b7614e84e0518aba4ecf253</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKsn_0DOytqZfK7HUqwKfhTagreQZrNtSrsr2ZTSf--268WTp3cGnhlmHkJuER4QpRwwQBzkApDrM9JDqXgmUejztgYmMmT865JcNc0agKHEvEfGQ_qx2_oYnN3Qd59WdUHLOtLZvs6myS49nabarWyTgqOTWC-j3TZ0VxU-0nnlfEw2VOlwTS5Ku2n8zW_2yXz8NBu9ZG-fz6-j4VtmOVcpY7YUpVJMuOIRXM7sonAMtHRK5UJw8FxYFAoWeqEVCp8LD-2ZdmGFdyWTvE_uu70u1k0TfWm-Y9jaeDAI5qjAHBWYTkFL33X0KlSF3Yd_4EkH2xBDCmZd72LV_mImLaUQUbfSThN4Cg2cMQCQfxuphJFaGcY5_wG6V2-K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Numerical Method for Two-Stage Stochastic Programs under Uncertainty</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Bosch, Paul</creator><contributor>Luongo, Angelo</contributor><creatorcontrib>Bosch, Paul ; Luongo, Angelo</creatorcontrib><description>Motivated by problems coming from planning and operational management in power generation companies, this work extends the traditional two-stage linear stochastic program by adding probabilistic constraints in the second stage. In this work we describe, under special assumptions, how the two-stage stochastic programs with mixed probabilities can be treated computationally. We obtain a convex conservative approximations of the chance constraints defined in second stage of our model and use Monte Carlo simulation techniques for approximating the expectation function in the first stage by the average. This approach raises with another question: how to solve the linear program with the convex conservative approximation (nonlinear constrains) for each scenario?</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2011/840137</identifier><language>eng</language><publisher>Hindawi Limiteds</publisher><ispartof>Mathematical Problems in Engineering, 2011-01, Vol.2011 (1), p.564-576-233</ispartof><rights>Copyright © 2011 Paul Bosch.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a336t-2af4f6624cd90c82abdc2075c6684430e34a1460b7b7614e84e0518aba4ecf253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><contributor>Luongo, Angelo</contributor><creatorcontrib>Bosch, Paul</creatorcontrib><title>A Numerical Method for Two-Stage Stochastic Programs under Uncertainty</title><title>Mathematical Problems in Engineering</title><description>Motivated by problems coming from planning and operational management in power generation companies, this work extends the traditional two-stage linear stochastic program by adding probabilistic constraints in the second stage. In this work we describe, under special assumptions, how the two-stage stochastic programs with mixed probabilities can be treated computationally. We obtain a convex conservative approximations of the chance constraints defined in second stage of our model and use Monte Carlo simulation techniques for approximating the expectation function in the first stage by the average. This approach raises with another question: how to solve the linear program with the convex conservative approximation (nonlinear constrains) for each scenario?</description><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqFkE1LAzEQhoMoWKsn_0DOytqZfK7HUqwKfhTagreQZrNtSrsr2ZTSf--268WTp3cGnhlmHkJuER4QpRwwQBzkApDrM9JDqXgmUejztgYmMmT865JcNc0agKHEvEfGQ_qx2_oYnN3Qd59WdUHLOtLZvs6myS49nabarWyTgqOTWC-j3TZ0VxU-0nnlfEw2VOlwTS5Ku2n8zW_2yXz8NBu9ZG-fz6-j4VtmOVcpY7YUpVJMuOIRXM7sonAMtHRK5UJw8FxYFAoWeqEVCp8LD-2ZdmGFdyWTvE_uu70u1k0TfWm-Y9jaeDAI5qjAHBWYTkFL33X0KlSF3Yd_4EkH2xBDCmZd72LV_mImLaUQUbfSThN4Cg2cMQCQfxuphJFaGcY5_wG6V2-K</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Bosch, Paul</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><scope>188</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110101</creationdate><title>A Numerical Method for Two-Stage Stochastic Programs under Uncertainty</title><author>Bosch, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-2af4f6624cd90c82abdc2075c6684430e34a1460b7b7614e84e0518aba4ecf253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bosch, Paul</creatorcontrib><collection>Airiti Library</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><jtitle>Mathematical Problems in Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bosch, Paul</au><au>Luongo, Angelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Numerical Method for Two-Stage Stochastic Programs under Uncertainty</atitle><jtitle>Mathematical Problems in Engineering</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>2011</volume><issue>1</issue><spage>564</spage><epage>576-233</epage><pages>564-576-233</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Motivated by problems coming from planning and operational management in power generation companies, this work extends the traditional two-stage linear stochastic program by adding probabilistic constraints in the second stage. In this work we describe, under special assumptions, how the two-stage stochastic programs with mixed probabilities can be treated computationally. We obtain a convex conservative approximations of the chance constraints defined in second stage of our model and use Monte Carlo simulation techniques for approximating the expectation function in the first stage by the average. This approach raises with another question: how to solve the linear program with the convex conservative approximation (nonlinear constrains) for each scenario?</abstract><pub>Hindawi Limiteds</pub><doi>10.1155/2011/840137</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical Problems in Engineering, 2011-01, Vol.2011 (1), p.564-576-233 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_crossref_primary_10_1155_2011_840137 |
source | Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
title | A Numerical Method for Two-Stage Stochastic Programs under Uncertainty |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A36%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-airiti_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Numerical%20Method%20for%20Two-Stage%20Stochastic%20Programs%20under%20Uncertainty&rft.jtitle=Mathematical%20Problems%20in%20Engineering&rft.au=Bosch,%20Paul&rft.date=2011-01-01&rft.volume=2011&rft.issue=1&rft.spage=564&rft.epage=576-233&rft.pages=564-576-233&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2011/840137&rft_dat=%3Cairiti_cross%3EP20161117002_201112_201703220005_201703220005_564_576_233%3C/airiti_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_airiti_id=P20161117002_201112_201703220005_201703220005_564_576_233&rfr_iscdi=true |