A Nonparametric Two-Sample Wald Test of Equality of Variances

We develop a test for equality of variances given two independent random samples of observations. The test can be expected to perform well when both sample sizes are at least moderate and the sample variances are asymptotically equivalent to the maximum likelihood estimators of the population varian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in decision sciences 2012, Vol.2011 (2011), p.1-8
Hauptverfasser: Allingham, David, Rayner, J. C. W.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 2011
container_start_page 1
container_title Advances in decision sciences
container_volume 2011
creator Allingham, David
Rayner, J. C. W.
description We develop a test for equality of variances given two independent random samples of observations. The test can be expected to perform well when both sample sizes are at least moderate and the sample variances are asymptotically equivalent to the maximum likelihood estimators of the population variances. The test is motivated by and is here assessed for the case when both populations sampled are assumed to be normal. Popular choices of test would be the two-sample F test if normality can be assumed and Levene’s test if this assumption is dubious. Another competitor is the Wald test for the difference in the population variances. We give a nonparametric analogue of this test and call it the R test. In an indicative empirical study when both populations are normal, we find that when both sample sizes are at least 25 the R test is nearly as robust as Levene’s test and nearly as powerful as the F test.
doi_str_mv 10.1155/2011/748580
format Article
fullrecord <record><control><sourceid>emarefa_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1155_2011_748580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>495593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2420-31cc6d72b9a9d5ebf507e89a99ea24f50d64230eb8c2f1f93b4c49f9c87a84dc3</originalsourceid><addsrcrecordid>eNqFj0tLw0AURgdRsNSuXAtZK7HzTGYWLkqpDyi6MOoy3MwDR_JyplL6702IdOvd3O-Dw70chC4JviVEiCXFhCxzLoXEJ2hGscIpY1l-esxCnaNFjF94GKZEpvAM3a2S567tIUBjd8HrpNh36Ss0fW2TD6hNUti4SzqXbL5_oPa7w5jfIXhotY0X6MxBHe3ib8_R2_2mWD-m25eHp_Vqm2rK6fCaaJ2ZnFYKlBG2cgLnVg5FWaB8aCbjlGFbSU0dcYpVXHPllJY5SG40m6Ob6a4OXYzBurIPvoFwKAkuR_lylC8n-YG-nuhP3xrY-3_gqwm2A2IdHGGuhFCM_QIJiWGI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Nonparametric Two-Sample Wald Test of Equality of Variances</title><source>Alma/SFX Local Collection</source><source>EBSCOhost Business Source Complete</source><creator>Allingham, David ; Rayner, J. C. W.</creator><contributor>Lin, YanXia</contributor><creatorcontrib>Allingham, David ; Rayner, J. C. W. ; Lin, YanXia</creatorcontrib><description>We develop a test for equality of variances given two independent random samples of observations. The test can be expected to perform well when both sample sizes are at least moderate and the sample variances are asymptotically equivalent to the maximum likelihood estimators of the population variances. The test is motivated by and is here assessed for the case when both populations sampled are assumed to be normal. Popular choices of test would be the two-sample F test if normality can be assumed and Levene’s test if this assumption is dubious. Another competitor is the Wald test for the difference in the population variances. We give a nonparametric analogue of this test and call it the R test. In an indicative empirical study when both populations are normal, we find that when both sample sizes are at least 25 the R test is nearly as robust as Levene’s test and nearly as powerful as the F test.</description><identifier>ISSN: 2090-3359</identifier><identifier>EISSN: 2090-3367</identifier><identifier>DOI: 10.1155/2011/748580</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><ispartof>Advances in decision sciences, 2012, Vol.2011 (2011), p.1-8</ispartof><rights>Copyright © 2011 David Allingham and J. C. W. Rayner.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2420-31cc6d72b9a9d5ebf507e89a99ea24f50d64230eb8c2f1f93b4c49f9c87a84dc3</citedby><cites>FETCH-LOGICAL-c2420-31cc6d72b9a9d5ebf507e89a99ea24f50d64230eb8c2f1f93b4c49f9c87a84dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Lin, YanXia</contributor><creatorcontrib>Allingham, David</creatorcontrib><creatorcontrib>Rayner, J. C. W.</creatorcontrib><title>A Nonparametric Two-Sample Wald Test of Equality of Variances</title><title>Advances in decision sciences</title><description>We develop a test for equality of variances given two independent random samples of observations. The test can be expected to perform well when both sample sizes are at least moderate and the sample variances are asymptotically equivalent to the maximum likelihood estimators of the population variances. The test is motivated by and is here assessed for the case when both populations sampled are assumed to be normal. Popular choices of test would be the two-sample F test if normality can be assumed and Levene’s test if this assumption is dubious. Another competitor is the Wald test for the difference in the population variances. We give a nonparametric analogue of this test and call it the R test. In an indicative empirical study when both populations are normal, we find that when both sample sizes are at least 25 the R test is nearly as robust as Levene’s test and nearly as powerful as the F test.</description><issn>2090-3359</issn><issn>2090-3367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqFj0tLw0AURgdRsNSuXAtZK7HzTGYWLkqpDyi6MOoy3MwDR_JyplL6702IdOvd3O-Dw70chC4JviVEiCXFhCxzLoXEJ2hGscIpY1l-esxCnaNFjF94GKZEpvAM3a2S567tIUBjd8HrpNh36Ss0fW2TD6hNUti4SzqXbL5_oPa7w5jfIXhotY0X6MxBHe3ib8_R2_2mWD-m25eHp_Vqm2rK6fCaaJ2ZnFYKlBG2cgLnVg5FWaB8aCbjlGFbSU0dcYpVXHPllJY5SG40m6Ob6a4OXYzBurIPvoFwKAkuR_lylC8n-YG-nuhP3xrY-3_gqwm2A2IdHGGuhFCM_QIJiWGI</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Allingham, David</creator><creator>Rayner, J. C. W.</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><scope>AACQA</scope><scope>ADJCN</scope><scope>ADTGW</scope><scope>AGZBS</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2012</creationdate><title>A Nonparametric Two-Sample Wald Test of Equality of Variances</title><author>Allingham, David ; Rayner, J. C. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2420-31cc6d72b9a9d5ebf507e89a99ea24f50d64230eb8c2f1f93b4c49f9c87a84dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allingham, David</creatorcontrib><creatorcontrib>Rayner, J. C. W.</creatorcontrib><collection>بنك معلومات "معرفة" لدراسات العلوم العسكرية والأمنية - e-Marefa Military &amp; Security Database</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>قاعدة العلوم الاقتصادية والمالية وإدارة الأعمال - e-Marefa Economics, Finance &amp; Business Administration</collection><collection>قاعدة العلوم الاجتماعية - e-Marefa Social Sciences</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><jtitle>Advances in decision sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allingham, David</au><au>Rayner, J. C. W.</au><au>Lin, YanXia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Nonparametric Two-Sample Wald Test of Equality of Variances</atitle><jtitle>Advances in decision sciences</jtitle><date>2012</date><risdate>2012</risdate><volume>2011</volume><issue>2011</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2090-3359</issn><eissn>2090-3367</eissn><abstract>We develop a test for equality of variances given two independent random samples of observations. The test can be expected to perform well when both sample sizes are at least moderate and the sample variances are asymptotically equivalent to the maximum likelihood estimators of the population variances. The test is motivated by and is here assessed for the case when both populations sampled are assumed to be normal. Popular choices of test would be the two-sample F test if normality can be assumed and Levene’s test if this assumption is dubious. Another competitor is the Wald test for the difference in the population variances. We give a nonparametric analogue of this test and call it the R test. In an indicative empirical study when both populations are normal, we find that when both sample sizes are at least 25 the R test is nearly as robust as Levene’s test and nearly as powerful as the F test.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.1155/2011/748580</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2090-3359
ispartof Advances in decision sciences, 2012, Vol.2011 (2011), p.1-8
issn 2090-3359
2090-3367
language eng
recordid cdi_crossref_primary_10_1155_2011_748580
source Alma/SFX Local Collection; EBSCOhost Business Source Complete
title A Nonparametric Two-Sample Wald Test of Equality of Variances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A59%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emarefa_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Nonparametric%20Two-Sample%20Wald%20Test%20of%20Equality%20of%20Variances&rft.jtitle=Advances%20in%20decision%20sciences&rft.au=Allingham,%20David&rft.date=2012&rft.volume=2011&rft.issue=2011&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2090-3359&rft.eissn=2090-3367&rft_id=info:doi/10.1155/2011/748580&rft_dat=%3Cemarefa_cross%3E495593%3C/emarefa_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true