An Algorithm for Optimally Fitting a Wiener Model

The purpose of this work is to present a new methodology for fitting Wiener networks to datasets with a large number of variables. Wiener networks have the ability to model a wide range of data types, and their structures can yield parameters with phenomenological meaning. There are several challeng...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Problems in Engineering 2011-01, Vol.2011 (2011), p.834-848-152
Hauptverfasser: Beverlin, Lucas P., Rollins, Derrick K., Vyas, Nisarg, Andre, David
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 848-152
container_issue 2011
container_start_page 834
container_title Mathematical Problems in Engineering
container_volume 2011
creator Beverlin, Lucas P.
Rollins, Derrick K.
Vyas, Nisarg
Andre, David
description The purpose of this work is to present a new methodology for fitting Wiener networks to datasets with a large number of variables. Wiener networks have the ability to model a wide range of data types, and their structures can yield parameters with phenomenological meaning. There are several challenges to fitting such a model: model stiffness, the nonlinear nature of a Wiener network, possible overfitting, and the large number of parameters inherent with large input sets. This work describes a methodology to overcome these challenges by using several iterative algorithms under supervised learning and fitting subsets of the parameters at a time. This methodology is applied to Wiener networks that are used to predict blood glucose concentrations. The predictions of validation sets from models fit to four subjects using this methodology yielded a higher correlation between observed and predicted observations than other algorithms, including the Gauss-Newton and Levenberg-Marquardt algorithms.
doi_str_mv 10.1155/2011/570509
format Article
fullrecord <record><control><sourceid>airiti_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1155_2011_570509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20161117002_201112_201703220005_201703220005_834_848_152</airiti_id><sourcerecordid>P20161117002_201112_201703220005_201703220005_834_848_152</sourcerecordid><originalsourceid>FETCH-LOGICAL-a400t-58b07f8f5f3e787645293c94284c4808d3ef3bbe598e11ecd435441515d508753</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKsnz8KelbUzSabJHkuxKlTag6K3sO0mbcp2t2RXpP_etCuCJ09vhvl4vDeMXSPcIxINOCAOSAFBdsJ6SEOREkp1GmfgMkUuPs7ZRdNsADgS6h7DUZWMylUdfLveJq4OyWzX-m1elvtk4tvWV6skT969rWxIXurClpfszOVlY69-tM_eJg-v46d0Ont8Ho-maS4B2pT0ApTTjpywSquhJJ6JZSa5lkupQRfCOrFYWMq0RbTLQgqSMoaigkArEn121_kuQ900wTqzCzFY2BsEc2hrDm1N1zbStx299lWRf_l_4JsOthGxLv-FpUbKRLzPu3vu41-82dSfoYpdzTy6DBFRxf8dHfEoCgTnAEB_Fy2k0VIbJC6-AXvZcFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Algorithm for Optimally Fitting a Wiener Model</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Beverlin, Lucas P. ; Rollins, Derrick K. ; Vyas, Nisarg ; Andre, David</creator><contributor>Macau, Elbert</contributor><creatorcontrib>Beverlin, Lucas P. ; Rollins, Derrick K. ; Vyas, Nisarg ; Andre, David ; Macau, Elbert</creatorcontrib><description>The purpose of this work is to present a new methodology for fitting Wiener networks to datasets with a large number of variables. Wiener networks have the ability to model a wide range of data types, and their structures can yield parameters with phenomenological meaning. There are several challenges to fitting such a model: model stiffness, the nonlinear nature of a Wiener network, possible overfitting, and the large number of parameters inherent with large input sets. This work describes a methodology to overcome these challenges by using several iterative algorithms under supervised learning and fitting subsets of the parameters at a time. This methodology is applied to Wiener networks that are used to predict blood glucose concentrations. The predictions of validation sets from models fit to four subjects using this methodology yielded a higher correlation between observed and predicted observations than other algorithms, including the Gauss-Newton and Levenberg-Marquardt algorithms.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2011/570509</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><ispartof>Mathematical Problems in Engineering, 2011-01, Vol.2011 (2011), p.834-848-152</ispartof><rights>Copyright © 2011 Lucas P. Beverlin et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a400t-58b07f8f5f3e787645293c94284c4808d3ef3bbe598e11ecd435441515d508753</citedby><cites>FETCH-LOGICAL-a400t-58b07f8f5f3e787645293c94284c4808d3ef3bbe598e11ecd435441515d508753</cites><orcidid>0000-0003-0848-6386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><contributor>Macau, Elbert</contributor><creatorcontrib>Beverlin, Lucas P.</creatorcontrib><creatorcontrib>Rollins, Derrick K.</creatorcontrib><creatorcontrib>Vyas, Nisarg</creatorcontrib><creatorcontrib>Andre, David</creatorcontrib><title>An Algorithm for Optimally Fitting a Wiener Model</title><title>Mathematical Problems in Engineering</title><description>The purpose of this work is to present a new methodology for fitting Wiener networks to datasets with a large number of variables. Wiener networks have the ability to model a wide range of data types, and their structures can yield parameters with phenomenological meaning. There are several challenges to fitting such a model: model stiffness, the nonlinear nature of a Wiener network, possible overfitting, and the large number of parameters inherent with large input sets. This work describes a methodology to overcome these challenges by using several iterative algorithms under supervised learning and fitting subsets of the parameters at a time. This methodology is applied to Wiener networks that are used to predict blood glucose concentrations. The predictions of validation sets from models fit to four subjects using this methodology yielded a higher correlation between observed and predicted observations than other algorithms, including the Gauss-Newton and Levenberg-Marquardt algorithms.</description><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqFkEFLAzEQhYMoWKsnz8KelbUzSabJHkuxKlTag6K3sO0mbcp2t2RXpP_etCuCJ09vhvl4vDeMXSPcIxINOCAOSAFBdsJ6SEOREkp1GmfgMkUuPs7ZRdNsADgS6h7DUZWMylUdfLveJq4OyWzX-m1elvtk4tvWV6skT969rWxIXurClpfszOVlY69-tM_eJg-v46d0Ont8Ho-maS4B2pT0ApTTjpywSquhJJ6JZSa5lkupQRfCOrFYWMq0RbTLQgqSMoaigkArEn121_kuQ900wTqzCzFY2BsEc2hrDm1N1zbStx299lWRf_l_4JsOthGxLv-FpUbKRLzPu3vu41-82dSfoYpdzTy6DBFRxf8dHfEoCgTnAEB_Fy2k0VIbJC6-AXvZcFM</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Beverlin, Lucas P.</creator><creator>Rollins, Derrick K.</creator><creator>Vyas, Nisarg</creator><creator>Andre, David</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0848-6386</orcidid></search><sort><creationdate>20110101</creationdate><title>An Algorithm for Optimally Fitting a Wiener Model</title><author>Beverlin, Lucas P. ; Rollins, Derrick K. ; Vyas, Nisarg ; Andre, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a400t-58b07f8f5f3e787645293c94284c4808d3ef3bbe598e11ecd435441515d508753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beverlin, Lucas P.</creatorcontrib><creatorcontrib>Rollins, Derrick K.</creatorcontrib><creatorcontrib>Vyas, Nisarg</creatorcontrib><creatorcontrib>Andre, David</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><jtitle>Mathematical Problems in Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beverlin, Lucas P.</au><au>Rollins, Derrick K.</au><au>Vyas, Nisarg</au><au>Andre, David</au><au>Macau, Elbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Algorithm for Optimally Fitting a Wiener Model</atitle><jtitle>Mathematical Problems in Engineering</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>2011</volume><issue>2011</issue><spage>834</spage><epage>848-152</epage><pages>834-848-152</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>The purpose of this work is to present a new methodology for fitting Wiener networks to datasets with a large number of variables. Wiener networks have the ability to model a wide range of data types, and their structures can yield parameters with phenomenological meaning. There are several challenges to fitting such a model: model stiffness, the nonlinear nature of a Wiener network, possible overfitting, and the large number of parameters inherent with large input sets. This work describes a methodology to overcome these challenges by using several iterative algorithms under supervised learning and fitting subsets of the parameters at a time. This methodology is applied to Wiener networks that are used to predict blood glucose concentrations. The predictions of validation sets from models fit to four subjects using this methodology yielded a higher correlation between observed and predicted observations than other algorithms, including the Gauss-Newton and Levenberg-Marquardt algorithms.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2011/570509</doi><orcidid>https://orcid.org/0000-0003-0848-6386</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical Problems in Engineering, 2011-01, Vol.2011 (2011), p.834-848-152
issn 1024-123X
1563-5147
language eng
recordid cdi_crossref_primary_10_1155_2011_570509
source EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
title An Algorithm for Optimally Fitting a Wiener Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-airiti_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Algorithm%20for%20Optimally%20Fitting%20a%20Wiener%20Model&rft.jtitle=Mathematical%20Problems%20in%20Engineering&rft.au=Beverlin,%20Lucas%20P.&rft.date=2011-01-01&rft.volume=2011&rft.issue=2011&rft.spage=834&rft.epage=848-152&rft.pages=834-848-152&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2011/570509&rft_dat=%3Cairiti_cross%3EP20161117002_201112_201703220005_201703220005_834_848_152%3C/airiti_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_airiti_id=P20161117002_201112_201703220005_201703220005_834_848_152&rfr_iscdi=true