Dual Boundary Element Method Applied to Antiplane Crack Problems

This paper is concerned with an efficient dual boundary element method for 2d crack problems under antiplane shear loading. The dual equations are the displacement and the traction boundary integral equations. When the displacement equation is applied on the outer boundary and the traction equation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Problems in Engineering 2009-01, Vol.2009 (1), p.108-117-7
1. Verfasser: Wu, Wei-Liang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117-7
container_issue 1
container_start_page 108
container_title Mathematical Problems in Engineering
container_volume 2009
creator Wu, Wei-Liang
description This paper is concerned with an efficient dual boundary element method for 2d crack problems under antiplane shear loading. The dual equations are the displacement and the traction boundary integral equations. When the displacement equation is applied on the outer boundary and the traction equation on one of the crack surfaces, general crack problems with anti-plane shear loading can be solved with a single region formulation. The outer boundary is discretised with continuous quadratic elements; however, only one of the crack surfaces needs to be discretised with discontinuous quadratic elements. Highly accurate results are obtained, when the stress intensity factor is evaluated with the discontinuous quarter point element method. Numerical examples are provided to demonstrate the accuracy and efficiency of the present formulation.
doi_str_mv 10.1155/2009/132980
format Article
fullrecord <record><control><sourceid>airiti_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1155_2009_132980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20161117002_200912_201703270026_201703270026_108_117_7</airiti_id><sourcerecordid>P20161117002_200912_201703270026_201703270026_108_117_7</sourcerecordid><originalsourceid>FETCH-LOGICAL-a407t-420158b42c3fa12d22634cccf25a4bb2e6c5bfb951c702a21f7d758e67e5b3fa3</originalsourceid><addsrcrecordid>eNqFkDtPwzAQgC0EEqUw8Qc8g0J95zhON0opD6lAB5DYLMdxVJc0iZxEiH-PQ1iYmO6h7073HSHnwK4AhJghY_MZcJyn7IBMQCQ8EhDLw5AzjCNA_n5MTtp2xxiCgHRCrm97XdKbuq9y7b_oqrR7W3X0yXbbOqeLpimdzWlX00XVuabUlaVLr80H3fg6C3B7So4KXbb27DdOydvd6nX5EK1f7h-Xi3WkYya7KEYGIs1iNLzQgDliwmNjTIFCx1mGNjEiK7K5ACMZaoRC5lKkNpFWZGGET8nluNf4um29LVTj3T7crICpQV4N8mqUD_TFSG9dEPt0_8DPI6ydd51Tu7r3VXBRm3B0AgAyvOtnAoYQSo5DK_lbAEvDbqkk_wajym0p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dual Boundary Element Method Applied to Antiplane Crack Problems</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Wu, Wei-Liang</creator><contributor>Luongo, Angelo</contributor><creatorcontrib>Wu, Wei-Liang ; Luongo, Angelo</creatorcontrib><description>This paper is concerned with an efficient dual boundary element method for 2d crack problems under antiplane shear loading. The dual equations are the displacement and the traction boundary integral equations. When the displacement equation is applied on the outer boundary and the traction equation on one of the crack surfaces, general crack problems with anti-plane shear loading can be solved with a single region formulation. The outer boundary is discretised with continuous quadratic elements; however, only one of the crack surfaces needs to be discretised with discontinuous quadratic elements. Highly accurate results are obtained, when the stress intensity factor is evaluated with the discontinuous quarter point element method. Numerical examples are provided to demonstrate the accuracy and efficiency of the present formulation.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2009/132980</identifier><language>eng</language><publisher>Hindawi Limiteds</publisher><ispartof>Mathematical Problems in Engineering, 2009-01, Vol.2009 (1), p.108-117-7</ispartof><rights>Copyright © 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a407t-420158b42c3fa12d22634cccf25a4bb2e6c5bfb951c702a21f7d758e67e5b3fa3</citedby><cites>FETCH-LOGICAL-a407t-420158b42c3fa12d22634cccf25a4bb2e6c5bfb951c702a21f7d758e67e5b3fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><contributor>Luongo, Angelo</contributor><creatorcontrib>Wu, Wei-Liang</creatorcontrib><title>Dual Boundary Element Method Applied to Antiplane Crack Problems</title><title>Mathematical Problems in Engineering</title><description>This paper is concerned with an efficient dual boundary element method for 2d crack problems under antiplane shear loading. The dual equations are the displacement and the traction boundary integral equations. When the displacement equation is applied on the outer boundary and the traction equation on one of the crack surfaces, general crack problems with anti-plane shear loading can be solved with a single region formulation. The outer boundary is discretised with continuous quadratic elements; however, only one of the crack surfaces needs to be discretised with discontinuous quadratic elements. Highly accurate results are obtained, when the stress intensity factor is evaluated with the discontinuous quarter point element method. Numerical examples are provided to demonstrate the accuracy and efficiency of the present formulation.</description><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqFkDtPwzAQgC0EEqUw8Qc8g0J95zhON0opD6lAB5DYLMdxVJc0iZxEiH-PQ1iYmO6h7073HSHnwK4AhJghY_MZcJyn7IBMQCQ8EhDLw5AzjCNA_n5MTtp2xxiCgHRCrm97XdKbuq9y7b_oqrR7W3X0yXbbOqeLpimdzWlX00XVuabUlaVLr80H3fg6C3B7So4KXbb27DdOydvd6nX5EK1f7h-Xi3WkYya7KEYGIs1iNLzQgDliwmNjTIFCx1mGNjEiK7K5ACMZaoRC5lKkNpFWZGGET8nluNf4um29LVTj3T7crICpQV4N8mqUD_TFSG9dEPt0_8DPI6ydd51Tu7r3VXBRm3B0AgAyvOtnAoYQSo5DK_lbAEvDbqkk_wajym0p</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Wu, Wei-Liang</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><scope>188</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090101</creationdate><title>Dual Boundary Element Method Applied to Antiplane Crack Problems</title><author>Wu, Wei-Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a407t-420158b42c3fa12d22634cccf25a4bb2e6c5bfb951c702a21f7d758e67e5b3fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Wei-Liang</creatorcontrib><collection>Airiti Library</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><jtitle>Mathematical Problems in Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Wei-Liang</au><au>Luongo, Angelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual Boundary Element Method Applied to Antiplane Crack Problems</atitle><jtitle>Mathematical Problems in Engineering</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>2009</volume><issue>1</issue><spage>108</spage><epage>117-7</epage><pages>108-117-7</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>This paper is concerned with an efficient dual boundary element method for 2d crack problems under antiplane shear loading. The dual equations are the displacement and the traction boundary integral equations. When the displacement equation is applied on the outer boundary and the traction equation on one of the crack surfaces, general crack problems with anti-plane shear loading can be solved with a single region formulation. The outer boundary is discretised with continuous quadratic elements; however, only one of the crack surfaces needs to be discretised with discontinuous quadratic elements. Highly accurate results are obtained, when the stress intensity factor is evaluated with the discontinuous quarter point element method. Numerical examples are provided to demonstrate the accuracy and efficiency of the present formulation.</abstract><pub>Hindawi Limiteds</pub><doi>10.1155/2009/132980</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical Problems in Engineering, 2009-01, Vol.2009 (1), p.108-117-7
issn 1024-123X
1563-5147
language eng
recordid cdi_crossref_primary_10_1155_2009_132980
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title Dual Boundary Element Method Applied to Antiplane Crack Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A24%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-airiti_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20Boundary%20Element%20Method%20Applied%20to%20Antiplane%20Crack%20Problems&rft.jtitle=Mathematical%20Problems%20in%20Engineering&rft.au=Wu,%20Wei-Liang&rft.date=2009-01-01&rft.volume=2009&rft.issue=1&rft.spage=108&rft.epage=117-7&rft.pages=108-117-7&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2009/132980&rft_dat=%3Cairiti_cross%3EP20161117002_200912_201703270026_201703270026_108_117_7%3C/airiti_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_airiti_id=P20161117002_200912_201703270026_201703270026_108_117_7&rfr_iscdi=true