Cellular Response to Hyperosmotic Stresses

National Heart, Lung, and Blood Institute, Bethesda, Maryland Cells in the renal inner medulla are normally exposed to extraordinarily high levels of NaCl and urea. The osmotic stress causes numerous perturbations because of the hypertonic effect of high NaCl and the direct denaturation of cellular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological reviews 2007-10, Vol.87 (4), p.1441-1474
Hauptverfasser: Burg, Maurice B, Ferraris, Joan D, Dmitrieva, Natalia I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1474
container_issue 4
container_start_page 1441
container_title Physiological reviews
container_volume 87
creator Burg, Maurice B
Ferraris, Joan D
Dmitrieva, Natalia I
description National Heart, Lung, and Blood Institute, Bethesda, Maryland Cells in the renal inner medulla are normally exposed to extraordinarily high levels of NaCl and urea. The osmotic stress causes numerous perturbations because of the hypertonic effect of high NaCl and the direct denaturation of cellular macromolecules by high urea. High NaCl and urea elevate reactive oxygen species, cause cytoskeletal rearrangement, inhibit DNA replication and transcription, inhibit translation, depolarize mitochondria, and damage DNA and proteins. Nevertheless, cells can accommodate by changes that include accumulation of organic osmolytes and increased expression of heat shock proteins. Failure to accommodate results in cell death by apoptosis. Although the adapted cells survive and function, many of the original perturbations persist, and even contribute to signaling the adaptive responses. This review addresses both the perturbing effects of high NaCl and urea and the adaptive responses. We speculate on the sensors of osmolality and document the multiple pathways that signal activation of the transcription factor TonEBP/OREBP, which directs many aspects of adaptation. The facts that numerous cellular functions are altered by hyperosmolality and remain so, even after adaptation, indicate that both the effects of hyperosmolality and adaptation to it involve profound alterations of the state of the cells.
doi_str_mv 10.1152/physrev.00056.2006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1152_physrev_00056_2006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68371674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-21d2210fcd141f63f9f9ab84cda8af49d14530e52afe97e055ce0b1264f742a43</originalsourceid><addsrcrecordid>eNqFkF1LIzEUhoMo26r7B7yQ4sVeLE7NyddkLqVsrVAQ1L0O6cyJHZk2YzLjbv_9prbuwoJ4FUie9805DyFnQMcAkl21y00M-DqmlEo1ZpSqAzJMDywDBvSQDCnlkBWc8wE5jvF5y0klv5AB5AXTUhdD8n2CTdM3NozuMbZ-HXHU-dFs02LwceW7uhw9dAFjxHhKjpxtIn7dnyfk5_TH42SWze9ubifX86yUinYZg4ql711ZgQCnuCtcYRdalJXV1okiXUtOUTLrsMgxjVQiXQBTwuWCWcFPyLddbxv8S4-xM6s6lmlMu0bfR6M0z0Hln4NQ5FpxqRJ48R_47PuwTksYBkpoITgkiO2gMm2evDrThnplw8YANVvfZu_bvPk2W98pdL5v7hcrrP5F9oIToHfAsn5a_qoDvrXUvvFPGzPtm-YRf3fvzTo3woAQYNrKpejlx9H3Wf5G-B-w_6Di</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216484431</pqid></control><display><type>article</type><title>Cellular Response to Hyperosmotic Stresses</title><source>MEDLINE</source><source>American Physiological Society Paid</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Burg, Maurice B ; Ferraris, Joan D ; Dmitrieva, Natalia I</creator><creatorcontrib>Burg, Maurice B ; Ferraris, Joan D ; Dmitrieva, Natalia I</creatorcontrib><description>National Heart, Lung, and Blood Institute, Bethesda, Maryland Cells in the renal inner medulla are normally exposed to extraordinarily high levels of NaCl and urea. The osmotic stress causes numerous perturbations because of the hypertonic effect of high NaCl and the direct denaturation of cellular macromolecules by high urea. High NaCl and urea elevate reactive oxygen species, cause cytoskeletal rearrangement, inhibit DNA replication and transcription, inhibit translation, depolarize mitochondria, and damage DNA and proteins. Nevertheless, cells can accommodate by changes that include accumulation of organic osmolytes and increased expression of heat shock proteins. Failure to accommodate results in cell death by apoptosis. Although the adapted cells survive and function, many of the original perturbations persist, and even contribute to signaling the adaptive responses. This review addresses both the perturbing effects of high NaCl and urea and the adaptive responses. We speculate on the sensors of osmolality and document the multiple pathways that signal activation of the transcription factor TonEBP/OREBP, which directs many aspects of adaptation. The facts that numerous cellular functions are altered by hyperosmolality and remain so, even after adaptation, indicate that both the effects of hyperosmolality and adaptation to it involve profound alterations of the state of the cells.</description><identifier>ISSN: 0031-9333</identifier><identifier>EISSN: 1522-1210</identifier><identifier>DOI: 10.1152/physrev.00056.2006</identifier><identifier>PMID: 17928589</identifier><identifier>CODEN: PHREA7</identifier><language>eng</language><publisher>United States: Am Physiological Soc</publisher><subject>Animals ; Apoptosis ; Cells ; Deoxyribonucleic acid ; DNA ; Humans ; Hypertonic Solutions ; Kidney Medulla - cytology ; Kidney Medulla - drug effects ; Molecules ; NFATC Transcription Factors - physiology ; Osmotic Pressure ; Proteins ; Salt ; Sodium Chloride - pharmacology ; Urea - pharmacology</subject><ispartof>Physiological reviews, 2007-10, Vol.87 (4), p.1441-1474</ispartof><rights>Copyright American Physiological Society Oct 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-21d2210fcd141f63f9f9ab84cda8af49d14530e52afe97e055ce0b1264f742a43</citedby><cites>FETCH-LOGICAL-c560t-21d2210fcd141f63f9f9ab84cda8af49d14530e52afe97e055ce0b1264f742a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3039,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17928589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burg, Maurice B</creatorcontrib><creatorcontrib>Ferraris, Joan D</creatorcontrib><creatorcontrib>Dmitrieva, Natalia I</creatorcontrib><title>Cellular Response to Hyperosmotic Stresses</title><title>Physiological reviews</title><addtitle>Physiol Rev</addtitle><description>National Heart, Lung, and Blood Institute, Bethesda, Maryland Cells in the renal inner medulla are normally exposed to extraordinarily high levels of NaCl and urea. The osmotic stress causes numerous perturbations because of the hypertonic effect of high NaCl and the direct denaturation of cellular macromolecules by high urea. High NaCl and urea elevate reactive oxygen species, cause cytoskeletal rearrangement, inhibit DNA replication and transcription, inhibit translation, depolarize mitochondria, and damage DNA and proteins. Nevertheless, cells can accommodate by changes that include accumulation of organic osmolytes and increased expression of heat shock proteins. Failure to accommodate results in cell death by apoptosis. Although the adapted cells survive and function, many of the original perturbations persist, and even contribute to signaling the adaptive responses. This review addresses both the perturbing effects of high NaCl and urea and the adaptive responses. We speculate on the sensors of osmolality and document the multiple pathways that signal activation of the transcription factor TonEBP/OREBP, which directs many aspects of adaptation. The facts that numerous cellular functions are altered by hyperosmolality and remain so, even after adaptation, indicate that both the effects of hyperosmolality and adaptation to it involve profound alterations of the state of the cells.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Cells</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Humans</subject><subject>Hypertonic Solutions</subject><subject>Kidney Medulla - cytology</subject><subject>Kidney Medulla - drug effects</subject><subject>Molecules</subject><subject>NFATC Transcription Factors - physiology</subject><subject>Osmotic Pressure</subject><subject>Proteins</subject><subject>Salt</subject><subject>Sodium Chloride - pharmacology</subject><subject>Urea - pharmacology</subject><issn>0031-9333</issn><issn>1522-1210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkF1LIzEUhoMo26r7B7yQ4sVeLE7NyddkLqVsrVAQ1L0O6cyJHZk2YzLjbv_9prbuwoJ4FUie9805DyFnQMcAkl21y00M-DqmlEo1ZpSqAzJMDywDBvSQDCnlkBWc8wE5jvF5y0klv5AB5AXTUhdD8n2CTdM3NozuMbZ-HXHU-dFs02LwceW7uhw9dAFjxHhKjpxtIn7dnyfk5_TH42SWze9ubifX86yUinYZg4ql711ZgQCnuCtcYRdalJXV1okiXUtOUTLrsMgxjVQiXQBTwuWCWcFPyLddbxv8S4-xM6s6lmlMu0bfR6M0z0Hln4NQ5FpxqRJ48R_47PuwTksYBkpoITgkiO2gMm2evDrThnplw8YANVvfZu_bvPk2W98pdL5v7hcrrP5F9oIToHfAsn5a_qoDvrXUvvFPGzPtm-YRf3fvzTo3woAQYNrKpejlx9H3Wf5G-B-w_6Di</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Burg, Maurice B</creator><creator>Ferraris, Joan D</creator><creator>Dmitrieva, Natalia I</creator><general>Am Physiological Soc</general><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>20071001</creationdate><title>Cellular Response to Hyperosmotic Stresses</title><author>Burg, Maurice B ; Ferraris, Joan D ; Dmitrieva, Natalia I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-21d2210fcd141f63f9f9ab84cda8af49d14530e52afe97e055ce0b1264f742a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Cells</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Humans</topic><topic>Hypertonic Solutions</topic><topic>Kidney Medulla - cytology</topic><topic>Kidney Medulla - drug effects</topic><topic>Molecules</topic><topic>NFATC Transcription Factors - physiology</topic><topic>Osmotic Pressure</topic><topic>Proteins</topic><topic>Salt</topic><topic>Sodium Chloride - pharmacology</topic><topic>Urea - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burg, Maurice B</creatorcontrib><creatorcontrib>Ferraris, Joan D</creatorcontrib><creatorcontrib>Dmitrieva, Natalia I</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Physiological reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burg, Maurice B</au><au>Ferraris, Joan D</au><au>Dmitrieva, Natalia I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular Response to Hyperosmotic Stresses</atitle><jtitle>Physiological reviews</jtitle><addtitle>Physiol Rev</addtitle><date>2007-10-01</date><risdate>2007</risdate><volume>87</volume><issue>4</issue><spage>1441</spage><epage>1474</epage><pages>1441-1474</pages><issn>0031-9333</issn><eissn>1522-1210</eissn><coden>PHREA7</coden><abstract>National Heart, Lung, and Blood Institute, Bethesda, Maryland Cells in the renal inner medulla are normally exposed to extraordinarily high levels of NaCl and urea. The osmotic stress causes numerous perturbations because of the hypertonic effect of high NaCl and the direct denaturation of cellular macromolecules by high urea. High NaCl and urea elevate reactive oxygen species, cause cytoskeletal rearrangement, inhibit DNA replication and transcription, inhibit translation, depolarize mitochondria, and damage DNA and proteins. Nevertheless, cells can accommodate by changes that include accumulation of organic osmolytes and increased expression of heat shock proteins. Failure to accommodate results in cell death by apoptosis. Although the adapted cells survive and function, many of the original perturbations persist, and even contribute to signaling the adaptive responses. This review addresses both the perturbing effects of high NaCl and urea and the adaptive responses. We speculate on the sensors of osmolality and document the multiple pathways that signal activation of the transcription factor TonEBP/OREBP, which directs many aspects of adaptation. The facts that numerous cellular functions are altered by hyperosmolality and remain so, even after adaptation, indicate that both the effects of hyperosmolality and adaptation to it involve profound alterations of the state of the cells.</abstract><cop>United States</cop><pub>Am Physiological Soc</pub><pmid>17928589</pmid><doi>10.1152/physrev.00056.2006</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9333
ispartof Physiological reviews, 2007-10, Vol.87 (4), p.1441-1474
issn 0031-9333
1522-1210
language eng
recordid cdi_crossref_primary_10_1152_physrev_00056_2006
source MEDLINE; American Physiological Society Paid; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Apoptosis
Cells
Deoxyribonucleic acid
DNA
Humans
Hypertonic Solutions
Kidney Medulla - cytology
Kidney Medulla - drug effects
Molecules
NFATC Transcription Factors - physiology
Osmotic Pressure
Proteins
Salt
Sodium Chloride - pharmacology
Urea - pharmacology
title Cellular Response to Hyperosmotic Stresses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A18%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20Response%20to%20Hyperosmotic%20Stresses&rft.jtitle=Physiological%20reviews&rft.au=Burg,%20Maurice%20B&rft.date=2007-10-01&rft.volume=87&rft.issue=4&rft.spage=1441&rft.epage=1474&rft.pages=1441-1474&rft.issn=0031-9333&rft.eissn=1522-1210&rft.coden=PHREA7&rft_id=info:doi/10.1152/physrev.00056.2006&rft_dat=%3Cproquest_cross%3E68371674%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216484431&rft_id=info:pmid/17928589&rfr_iscdi=true